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4. QUASI-INJECTIVE N-GROUPS

This chapter deals with quasi-injective N-groups and near-ring groups.

4.1. PREREQUISITES:

In this section of this chapter we define the basic terms and results that are needed for the 

sequel.

Definition 4.1.1: For a right near- ring (N, +,.) and a corresponding N- group E, suppose 

there is an x e E such that {nx / n e N} = E. Then E is a monogenic N - group and x is a 

generator.

Definition 4.1.2: An N-subgroup B of E is called fully invariant if for each N- 

homomorphism f: E —> E, f(B) c B.

Definition 4.1.3: A left ideal A of N is called small (strictly small) if N = B for each left 

ideal (N-subgroup) B such that N = A + B.

Since every left ideal is a left N-subgroup, a strictly small left ideal of N is also a small 

left ideal of N.

Definition 4.1.4: The intersection of all maximal ideals maximal as N-subgroups of N- 

group E is called radical of E and is denoted by J(E).

Definition 4.1.5: An N-group E is called irreducible if it has no proper non-zero N- 

subgroups.

Lemma 4.1.6 [K. Misra]: If the radical ideal J(N) is strictly small in N then the following 

conditions are equivalent-
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(i) Y e m

(ii) 1 —xy is left invertble for all x e N

(iii) yM = 0 for any irreducible left N-group M.

Proposition 4.1.7: Let 0-»A-»E-»B-»0bea short exact sequence of N-groups 

where A is N-subgroup (ideal) of E. Then E is Noetherian (weakly Noetherian) if and only 

if both A and B are Noetherian (weakly Noetherian).

Proof: First let E be Noetherian.

Then since A is isomorphic to an N-subgroup of E, so by definition A is Noetherian .

Again let g : E -» B be the N-epimorphism.

Then E/Kerg = B.

Kerg is ideal of E and E is Noetherian, so E/Kerg = B is Noetherian.

Conversely let A and B are both Noetherian, to show E is Noetherian.

If we assume A is an ideal of E and B = E/A. Proof of rest part is same as lemma 1.2.7.

If A is an N-subgroup of E, E/Kerg s B is Noetherian.

Imf = Kerg, Kerg is ideal of E;

Now, A is Noetherian and A/Kerf = Imf

A is Noetherian =* A/Kerf is Noetherian ==> Imf is Noetherian => Kerg is Noetherian. 

so E/Kerg, Kerg is Noetherian =* E is Noetherian.

Corollary 4.1.8: If E = Ei © E2©............. © E„ i.e E is finite direct sum of ideals ofN-

group E then E is weakly Noetherian if and only if Ej , E2,.............. , En are weakly

Noetherian.
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In [60] V. Seth and K. Tiwari proved that if N left dgnr, with identity and M right 

N-group then M is injective if and only if for every right ideal U of N and every N- 

homomorphism f: U —» M, there exists an element m in M such that f(a) = ma for all a in 

U. But in [48] A. Oswald claimed that converse of the above is not always true.

Theorem 4.1.9 [Seth, Tiwari]: N near-ring with identity and M N-group. If M is injective 

then for for every right ideal U of N and every N-homomorphism f: U ■—» M, there exists an 

element m in M such that f(a) = ma for all a in U.

Theorem 4.1.10: An N-group E is quasi-injective if and only if E is fully invariant N- 

subgroup of its injective hull.

Proof: Let S = End n E be the set of N-endomorphisms of E, B injective hull of E,

where (f + g)e = f(e) + g(e) for f, g e S and ee E.

First we assume E is fully invariant N-subgroup of E. i.e. fE c E, V f eS.

Let M be an N-subgroup of E and t: M -> E be an N-homomorphism. Then t must extend 

to some f eS, so E is quasi-injective.

Next let N-group E be quasi-injective and f eS. To show fE c E.

Restricting f, we get a map k : E n r’(E)-»E, i.e. f(x) = k(x) for xeEnf’(E) 

where r'(E) = (x e E / f(x) e E}.

Now E n r’(E) is an N-subgroup of E, so by quasi-injectivity of E, k can be extended to an 

N-endomorphism t of E. i.e. t(x) = k(x) VxeEn r*(E).

Then t extends to a map g eS such that g(E) c E, so we get
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g: E -» E with g(x) = t(x), V x € E.

Also (g - f)( E n r‘(E)) = 0.

For if xe E n f‘(E), then xe E and xe 1 such that f(x) e E and

(g - f) (x) = g(x) - f(x) = 0, since for xe En T^E), g(x) = t(x) = k(x) = f(x).

Since g(E) c E we get E n (g - f)_,Ec (En f *(E)) c ker(g - f), where

(g - f)_1E = {xeE/(g-f)(x)eE}.

Now, xe E n (g - f)-1E =>xeE and xe (g - f)-IE.

As xe E => g(x) egEcE,

So f(x) = g(x) - (g(x) - f(x)) e E 

=> xe E n f‘(E)

Thus E n (g - f)"'Ec (E n r‘(E)) c ker(g - f) [since (g - f)( E n r‘(E)) = 0]

=>(g - f)E n E = 0

Since X€(g-f)EnE=>x = (g-f)y;xeE,yeE 

=> y e(g - f)_1E 

=» y e E n (g - f)_1E 

=> y e ker(g - f)

=>(g-f)y = o.
Now (g - f)E n E = 0 =>(g - f)E = 0, because E <e E.

Hence f(E) = g(E) c E

=> f(E) c E.
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Theorem 4.1.11: If E is quasi-injective then its direct summands are also quasi-injective.

Proof: Let the normal N-subgroup A be a direct summand of E. To show A is quasi- 

injective.

Consider the direct sum decomposition E = A © B for some normal N-subgroup B.

Then by proposition 1.4.13 E = A © 6 and S = End n E .

If p e S is the projection onto X, then pSp = End n A.

Now SE c S by theorem 4.1.10, whence pSpE c pE and so pSpA c A.

So again by theorem 4.1.10, A is quasi-injective.

Theorem 4.1.12 [Clay]: For a near-ring (N, +, .) with identity 1, suppose E is a 

monogenic unitary N-group with generator x and suppose that T = { m e n / Ann {x)m 6 

Ann (x)} is a subgroup of (N, +). Then the N-endomorphisms Endn E of N- group E forms 

a right near ring where (f © g) (x) = f (x) + g (x) and (f.g) (x) = f(g(x)).

Also E is an End n E -group defined by

cp: E x End n E—» E by <p (m. f) = m. f = f(m).

4.2 Endomorphism near ring of quasi-injective N-groups:

In this section we investigate various characteristics of endomorphism near-ring of 

quasi-injective N-groups. We also study some aspects of Jacobson radical of 

endomorphism near-ring of quasi-injective N- groups.
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Throughout this section of this chapter we assume E satisfies the condition of 

theorem 4.1.12. and N is a dgnr.

If E- injective hull of E, we consider S = End n B

cj): B x S—>B by <J) (m, f) = m. f = f(m), m e B, f e S, then B is an S-group.

For this S-group we get the following:

Proposition 4.2.1: ES is an N-subgroup of B.

Let a, b £ ES

a = £xif,, b = Eyjfj, a - b = Exifi -Eyjfj e ES 

Let n G N, a G ES to show na G ES 

a = £x.fi 

na = n Exif,

= n £f(xj)

= (Si + S2 + S3 +................. + Sn) 2fi(Xj)

= S,2fi(Xi) + S22fi(X|) +........... ... + Sn2fi(Xi)

= ES1 fi(Xi) + IS2 fj(Xi) + ... . ........+ Esn f,(Xi)

= £fi(Sl Xi)+Zf>( S2Xi)+ ... . ........+ £fi(S„ Xj)

= E(Sl xi)fi+S(s2xi)fi+... ..........+ E (sn Xi)f,

GES [v(SjXi)GE]
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Proposition 4.2.2:

a. ES is quasi- injective

b. ES is the intersection of all quasi-injeetive N- subgroups of E containing E. So ES 

is the smallest N-subgroup of E containing E.

c. E is quasi- injective if and only if E = ES .

Proof:

(a) Let M be an N-subgroup of ES & f: M —»ES we take the inclusion map i: ES —» E 

Then the composite map h = if: M —»£ .

Since B is injective, so h can be extended by some X: B —»£ such that

x.A = A (x) = x.h for x eM 

= x. (if)

= (if) (x)

= i(f(x))

= f(x)

= x.f, where x.f = f(x) e ES

Thus f is induced by X e S.

Now let g e S. Then for y = 1 x,gj e ES

(I xigi) A = I Xi(gjA) e ES v gjA e S

(ES) A c ES.

A induces A : ES —» ES
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i.e. A can be restricted by some X : ES —» ES such that 

xA = x. X for x e ES

••• xA = x. f for x e M { v x. A = x.f for x e M and M £ ES)

=> f is induced by A : ES -> ES =»ES is quasi-injective.

(b) Let P be any quasi-injective N-subgroup of E containing E.

We wish to show ES = nP.

Since by (a) ES is quasi-injective. So nP £ ES.

Now to show ES £ n P. We will show ES £ P. So it is sufficient to show that Pa £ P 

VaeS.

Since if V a 6 S, Pa £ P then PS £ P.

But E £ P =» ES £ PS [ v E £ P => EX £ PA]

=> ES £ P.

To prove this we see that

Q(a) = {xeP/xaeP}isan N-subgroup of P.

Let x, y e Q(a) =» xa e P, ya e P. 

xa -ya e P.

=> a(x)— a(y) e P 

=» a(x-y) 6 P 

=> x—y G Q(a)

Next to show N Q(a) £ Q(a)
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i.e. for n 6 N, x & Q(a) to show nx e Q(a). 

x e Q(a) =>reP such that x.a e P 

V X e P, n e N => nx e P (v NP £ p)

(nx).a = a(njc) = na(x) = n(x.a) e P (v NP £ P)

=>ru:6 Q(a).

••■Q(a) is an N-subgroup of P.

We have only to show that Q(a) = P Va e S, since then y e P =» y e Q(a) => y.a e P => 

Pa c p

Since q -> qa, q e Q(a) = Q a map of Q into P and since P is quasi-injeetive so there exists

ai: P -> P such that qai = qa VqeQ

Since E is injective, 3 a' e S such that xa/=xai VxeP

Since P a7 £ P

If Via'—a) = 0 then Pa/= Pa 

So Pa £ P

So if Q(a) 4- P then P(a;—a) f- 0 

As we know E <e E => P <c E

(v if A(^ 0)<sE & P D A = 0 then E n A = 0 contradicts E <e E)

Now P(a/—a) is N-subgroup of B
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a, b G Via1—a) 

a = p i (a7—a) b = $2(0!—a) 

a-b = pi(a7-a) - p2(a/—a)

= (pi— p2)(a/-a) e P (a7-a) [ v (a7-a) e S]

For n e N, x e P (a7—a) let x = pi (a!—a)

Now n pi (a7—a) = n (a7—a) pi 

= n a7 (pi) - n a(pi)

= a7 (n pi) - a(n pi)

= (a7-a) (npi)

= (npi)(a7—a) e P(a7—a)

P(a7—a) N-subgroup of E .

Consequently we have P(a7—a) fiP ^ 0

But if x, 0 # y e P are such that y = x (a7-a) e P(a7-a) n P

Then since xa/=xaj v x e P , y = x(a7-a) = (a7-a)(x) = (a7x—ax) = xa7—xa

x a = x aj-y e P

Then x e Q(a) so that x a = x a7 and so y = 0, a contradiction. Which establishes (b). 

(c) Since ES is the intersection of all quasi-injective N-subgroups of E , containing E. 

E is quasi-injective => ES £ E. And E c ES is obvious by inclusion map.

ES = E
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Definition 4.2.3: (P, E, f) denotes a N-monomorphism f: E —> P and is called an extension

ofE.

An extension (P, E, f) of an N-group E is a minimal quasi-injective extension in case P is 

quasi-injective and the following condition is satisfied:

If (A, E, g) is any quasi-injective extension of E, then there exists an N-monomorphism 

(j>: P —*■ A such that P cj)

commutes i.e. g - 4>f.

Proposition 4.2.4: ES is minimal quasi-injective extension of E. Any two minimal quasi- 

injective extensions are equivalent.

Proof: Let (A, E, g) be any quasi-injective extension of E.

Let X = E(A) & Q = HohinCA, A)

Then by proposition 4.2.2 AO GA.

Since ES is an essential extension of E, the N-monomorphism g : E —> A can be extended 

to a monomorphism (also denoted by g) of ES in A.

mono j mono
[v if f: A —»E, E injective , A <e B, then f extends to r: B —* E]

Since g(ES) is quasi-injective .

E

mono
[v g(ES) = ES, v Kerg = 0 (f:A B, A = f(A)) ]
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Then (g(ES)) Q £ g(ES) and we conclude that (B) Q £B where B = g(ES) n A £ g(ES) 

g1 (B) £ (ES)

[v AB £ B, AC £ C, A(B n C) = AB n AC £ B n C]

Since B £ (B)Q is obvious.

••• by proposition 4.2.2. B is quasi-injective.

It follows that g'1 (B) is a quasi-injective extension of E £ES.

Since ES is the smallest quasi-injective extension of E contained in E, we conclude that

g"'(B) = ES. So B = g(ES) £ A. This establishes that ES is a minimal quasi-injective 

extension.

Next if (A, E, g) is also a minimal quasi-injective extension of E, then (A, E, g) is 

also equivalent to ES.

ES minimal quasi-injective extension of E. (A, E, g) also quasi-injective extension of E.

mono (p mono f mono cp
By definition for E ----------> ES, E--------- > A, there exists ES --------- » A s.t. the

diagram

E commutes i.e. g = (pf.

Again (A, E, g) is minimal quasi-injective extension of E. ES is also quasi-injective

mono g mono f
extension of E. By definition for E---------»A, E--------- * ES there exists
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mono coES--------- >A such that the diagram

CO
A ----------- > ES

E commutes. That is f=oog.

Now f = cog => f = oo<pf 

So I = cocp

Again g = cpf => g = cpcog 

So I = cpco

Thus oo and <p both are invertible which implies both co and cp are isomorphic.

Hence ES = An

Definition 4.2.5: A near-ring N is said to be a regular near-ring if for every element xe N, 

there exists an element ye N such that xyx = x.

Theorem 4.2.6: Let E be quasi-injective N-group let A = Hom(E, E) and let J = J(A) 

denote the Jacobson radical of A and is strictly small in A. Then

J = {AG A/E 2eKer A}. Iffory G J, A e A, yA 6 J then A /J is a regular near ring.

Where addition of two N-subgroups is again N-subgroup of E and N need not be 

dgnr.( 2e denotes essential extension)

Proof: Let I = {A G A / E 2e Ker A}

If A G A, n,y G I, then Ker(ju + y) □ Ker n n Ker y

Since x G Ker fi nKer y => x G Ker fi & x G Ker y =» ii(x) = 0 & y(x) = 0
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=$(jx + y)(x) = 0=^x6 Ker(fx + y)

Since Ker[x n Ker y is an essential N-subgroup.

Therefore Ker (ju + y) is essential N-subgroup of E. 

x G Ker y y(x) = 0.

Now for n,X e A, y G I, ([x(X + y)— [x A)(x) = (jx(X + y))(x)— ([x A)(x)

= (jxX)(x) + 0 — (ix A)(x) = 0 [since y(x) = 0.].

••• x G Ker( n(X + y)— fx A). And so Ker y £ Ker( ju(A + y)— [x A).

=>{niX + y)- ixX)£l.

I is left ideal of A.

However if A G I, Ker(l + fxA) = 0 for Ker A n Ker(l + ixX) = 0.

For if, A GI we have E 3e Ker A. x e Ker A n Ker(l + /xX) => A(x) = 0 and (1 + (xX)(x) - 0

=> x + jU(A(x)) = 0 => x + fi(0) = 0 => x = 0. Again A G I => E 3eKer A Ker(l + (xX) ~ 0.

1 + [xA : E -» (1 + jxX) E is an isomorphism => 3 ge A such that g(l + /xX) -1, so (1 + fxX) 

has a left inverse VAGI&V//GA.

So A G J [by theorem 4.1.6],

This establishes that I £ J.

Next let A be arbitrary element of A, let L be a complement N-subgroup of E corresponding 

to K = Ker(A) and consider the correspondence Ax -* x V x G L.

If Ax = Ay with x, y G L, then A(x - y) = 0 and then x-yGKnL = 0

Since E is quasi-injective, the map Ax -» x of AL in L is induced by some 0 G A.
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Ifu = x + y£L + K, x£L, y£K, then

(A - A0A)(u) = A(x) - A0A(x) = A(x) - A(x) = 0

=> A — A8A = 0.....*** [A0A(x) = A0(x) = A(x) = x, as for x 6 L 0(x) = A(x) = x ]

Since E 2e L + K {as K £ L + K} and since Ker(A — A0A) a L + K, we conclude that 

A — A0A £ I.

Also I is an ideal. Thus A is a regular modulo I.

Now to show J = I. If A 6 J and 0 6 A is chosen so that u = (A — A0A) £ I, (1 — 0A)"1 

exists. (Since J is Jacobson redical)

Therefore (1 - 0A)'‘u = (1 - 0A)''(A - A0A) = (1 - 0A)*'(1 - 0A) A = A and A £ I [v I is a 

left ideal]. Thus J = I is as asserted.

From *** A0A = AinA/I.

••• A/1 is regular ring. A/J is regular ring.

4.3 SOME PROPERTIES OF QUASI-INJECTIVE N-GROUPS:

This section contains some properties of quasi-injective N-groups related to 

essentially closed N-subgroups and complement N-subgroups. In this section we attempt to 

study various characteristics of quasi-injective N-groups satisfying chain conditions. In the 

third chapter we have investigated various characteristics of N-groups satisfying ascending 

chain condition on essential ideals and also investigated almost weakly Noetherian N- 

groups. Using the results proved in chapter 3, we try to establish new relations in quasi- 

injective N-groups satisfying chain conditions.
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Let M be an N-subgroup of E.

We consider F = { P/ P N-subgroup of E, P n M = 0}

F^cj), (0) GF

C = {P,/ Pj G F} is a chain in F.

Let K = U Pj [ x, y G U P; => x G Pj, y G Pj 

If i > y , x, y G Pj ••• x—y G Pj =» x—y G U P;.

AgainnGN,xGUPj =» x G Pj for some j, then nx G Pj =>nxG UP; ] 

v Pi n M = 0 ¥ i

(Uf Pi) n M = Ui(Pi n M) = 0 &UjPi<sE

UiPiec

So by Zorn’s lemma the N-subgroup K is maximal in the set of those N-subgroups P 

satisfying

P fi N = 0. Then K is said to be complement of M in E.

Definition 4.3.1: The N-subgroup K is maximal in the set of those N-subgroups P 

satisfying

P n N = 0 is said to be complement of M in E.

A complement N-subgroup (ideal) of E is a N-subgroup A which is a complement in E of 

some N-subgroup (ideal) B.

The following is an example of an N-group where sum of two N-subgroups is again an N- 

subgroup.
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Example 4.3.2: N = {0, a,b,c} is the Klein’s four group with multiplication

• 0 a b c

0 0 0 0 0

a 0 a b c

b 0 0 0 0

c 0 c b c

is a near-ring . Here A = {0, a}, B = {0, b}, C = {0, c} are the non-trivial N-subgroups of 

nN and sum of two N-subgroups is also an N-subgroup.

If sum of two N-subgroups is again an N-subgroup of an N-group we get following three 

lemmas and the corollary.

Lemma 4.3.3: If M is an N-subgroup of E and if K is any complement of M in E, then 

there exists a complement Q of K in E such that Q2M. Furthermore any such Q is a 

maximal essential extension of M in E.

Proof: Let F = {1/ InK= {0}, M £ I } . Since M e F. F f <j>

Let C = {Q/i EX,X index, Q e F} be a chain.

Q = UQ

Now(UiexCi)nK= U(C,nk) = 0 Vi [vC,nK = 0 Vi]
mX

& M c (JC, vi . M C C,
\eX

So by Zom’s lemma QeF, maximal element exists. Thus Q in the first sentence exists.
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Now to prove second assertion.

Let T be any non-zero N-subgroup of Q and assume that TnM = 0

Since TnK = 0 [Q<CK,T<SQ]

••• the sum Ki = T + K is direct and Ki properly contains K.

SinceKi nM = 0 [Ifpossible letKi flM^t 0. Ki DM = (T + K) nM

Let t + k = n G(T + K)nM^keKn(M + T)£KnQ=>k = 0^n = tEMnT 

contradiction to M n T = 0. Therefore Ki n M = 0 ]

This contradicts the definition of K.

This proves that Q is an essential extension of M.

If P is an N-subgroup of E properly containing Q, then P ft K £ 0 and

(PnK)nM = Pn(KnM) = Pno = o.

Thus P is not an essential extension of M, completing the proof.

Lemma 4.3.4: The essentially closed N-subgroups of an N-group E coincide with the

complement N-subgroups of E. If M and K are complement N-subgroups and if K is a
\

complement of M in E then M is a complement of K in E.

Proof: Let M be a essentially closed N-subgroup and let K is any complement of M. Then 

by lemma 4.3.3 there exists a complement Q of K such that M £ Q. This Q is maximal 

essential extension of M in E. But M is essentially closed, so it has no proper essential

extension.
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••• M = Q is a complement N-subgroup.

Next let M be complement of an N-subgroup P. Then 3 a complement K of M which 

contains P.

max
i.e. M nP = (0)............. (1)

max
Kf]M = (0) such that P c K.

If possible let <s E such that M £ M7 &KnM/ = (0)

Then PnM/= (0) v P c K, which contradicts (1).

••• M is also maximal such that. K n M = (0). ••• M is complement of K. Then M is 

essentially closed by lemma 4.3.3.

This also proves the last statement.

Theorem 4.3.5: Let E be quasi-injective and let M be a essentially closed N-subgroup, 

then for each N-subgroup K of E, N-homomorphism w : K -> M can be extended to N- 

homomorphism u : E -» M.

Proof: Let F = {L / w is extended to a map of T into M for T < E containing L}

By Zorn’s lemma we can assume that K is such that w cannot be extended to a map of T 

into M for any N-subgroup T of E which properly contains K.

Since E is quasi-injective, w is induced by a map u : E -» E & let L complement of M in E. 

Suppose u(E)$£ M.

Since M is essentially closed. M is a complement of L.

Therefore, since u(E) + M => M, we see that
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(u(E) + M) n L G 0.

Let0#x = a + bG u(E) + M) n L 

a e u(E), b e M

If a € M then xGMnL = 0,a contradiction.

Therefore a G M and a = x-b e L + M

Now T = {y 6 E / u(y) GL + M} is an N-subgroup of E containing K. 

v x 6 K => w(k) G M =» u(k) G M V k G K.

T contains K.

If y G E is such that u(y) = a then y G T, but y G K since a G M.

[v y e T => u(y) = a G L & y G K =» w(y) G M =* u(y) G M Vy GK, contradiction to aG M] 

Let n denote the projection of L + M on M. Then 7ru is a map of T in M and 

rru(y) = u(y) = w(y) Vy G K [ v y e K =» w(y) G M => u(y) G M V y G K ]

Thus 7ru is a proper extension of w, a contradiction.

.*• u(E) £ M, so u is the desired extension.

Cor 4.3.6: Let E be quasi-injective N-group then

(1) If M is any essentially closed N-subgroup of E, then M is direct summand of E and 

M is quasi-injective. Also M has a complement in E.

(2) If P is any N-subgroup of E, then there exists a quasi-injective essential extension

I

of P contained in E.
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(3) Each minimal quasi-injective extension of an N-group K is an essential extension 

of K.

Proof: (1) If e : E -» M is the extension given by the theroem4.3.5 of the injection map 

M M then E = M © Ker(e) where e(m) = ™ ^ ^

So that M is direct summand of E..% M is quasi-injective by theorem 4.1.11.

Moreover Ker(e) is complement of M. Since M n Ker(e) = (0)............(1)

M essentially closed => M complement of some N-subgroup K.

=> K is complement of M.

Le* MDK =(0)............. (2)

(1) &(2) => Ker(e) c K

Let (0 #)x € K => x g M

=> e(x) = 0 [by definition of e]

=> x € Ker(e).

K c Ker(e)

••• Ker(e) = K => Ker(e) complement of M.

(2) Let F = {I / P <= i, p <e i}

P € F. -- F ^ c|>

Let { Cj / C, G F) be a chain in F.

M = u.Cj, PCQ Vi
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=>Pc u,Ci P<eCi Vi

=> P <e u;Ci [ P n Aj^ 0 V i, A* <C,. Since P n (u; Ai) = Uj (P n A,) * 0.

U Aj< UCj]

If possible M = UjQ <e K

•••P <e M <e K => P <eK, contradicts maximality of M.

So by Zorn’s lemma P is contained in essentially closed N-subgroup M which is essential 

extension of P and M is quasi-injective by (1).

(3) Let A be any minimal quasi-injective extension of an N-group K, Let K is contained 

in quasi-injective essential extension B by (2)

i.e. K <eB, B essentially closed.

So A c B

As B is essential extension of K, A is also essential extension of K.

Thus every minimal quasi-injective extension of N-group K is an essential extension of K. 

Definitions 4.3.7: An N-group E is said to have finite Goldie dimension if it does not 

contain an infinite direct sum of non-zero ideals of E.

For an N-group E if there exists an integer n such that E has an independent 

family of n non-zero ideals, but no independent families of more than n non-zero ideals, 

then integer n is called the Goldie dimension of E.

The proof of the following proposition follows the same line of proof as N. V. Dung [22].
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Proposition 4.3.8: Let E be a finitely generated quasi-injective left N-group. Suppose E 

contains an infinite direct sum of non zero independent family of ideals H = ©kHx. Then 

the factor N- group E/H has infinite Goldie dimension.

Proof: Assume E/H has finite Goldie dimension k.

Since the index set A is infinite, we find infinite subsets Ai, A2,.............. Ak+i such that

Aj n Aj= 0 for i ^ j and A = A]U.............. U Ak+i

For Sj= 0Aj Ex (J = 1,2,.............. .. k+1) we get H = Si © S2 ©.............. © Sk+i

[ Since Hx S Sj = ©Aj Hx, for X e Aj, as x; e H^.

x, = 0 + 0 +..............+0 + Xi + 0 +...............+ 0 + 0 e ©Aj Hx,.]

=» Si’s are independent, as Hfs are independent by propositionl.3.6. 

x e H = ©aHx => x = Eie?ixi unique.

— SiieXj. xii~*~ Si2eX2 ........... ^ ^ik+ie^-k+i Xik+i

[V A = AlU........... U Ak+1, Ai n Aj = 0 where Sinex.n xin uniclue]

e Si © S2 ©...........© Sk+i.

Then we have E(H) = E (Sj) © E(S2)© ... ©E(Sk+I) by propositionl.4.13.
/

[ v Sj <e E( Sj) and { Sj} independent => E( Sj) independent by propositionl.3.6.]

E( Sj) Sj for each j.
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[ Note: Now for H = Si ® S2 ,E(H) = E(Sj) © E(S2) we show ®
H Si S2

where H, Si, S2 ideal of E.

Proof: Define a map 4>: by <J)(x + H) = (si + Si, s2 + S2) where x =
H Si S2

(si, s2) € E(H) with si e E(Si), s2 e E(S2).

<j> is well-defined:

Let (x 1 + Si, yi + S2) * (x2 + Si, y2 + S2) e ^ where (xh yi) = hi e E(H), (x2,
bi b2

y2) = h2 e E(H).

%

To show hi + H h2 + H.

Now (xi + Si, yi + S2) * (x2 + Si, y2 + S2)

=> either xi + Si * x2 + Si or yi + S2 * y2 + S2 or both.

=> either xi - x2 £ Si or yi - y2 0 S2 or both.

If possible let hi + H = h2 + H

=> hi - h2 e H

=> (xi, yi) - (x2, y2) e H

=> (Xi - x2, yi - y2) e H = Si © S2

=> Xi - x2 e Si or yi - y2 e S2, a contradiction, so hi + H * h2 + H.

So <|> is well-defined.

<]) is 1-1:



144

Let (=£ 0) xi+ H & X2 + H e

i.e. xi, X2 e E(H) but gH and xi - X2 g H.

Let xi = (sn , s2i), x2 = (S12, S22) with sn , s!2 e E(Si) and s2i, S22 e E(S2). 

<t>( xi+ H) = (sn + Si, S21+ S2), <K x2+ H) = (S12 + Si, S22+ Sa)

If possible let <|>( xi+ H) = $( X2+ H)

=> (sn + Si, S21+ S2) = (S12 + Si, S22+ S2)

i.e. su + Si = S12 + Si and S21+ S2 = S22+ S2

=> Si 1 -S12 e Si and S21—S22 e S2

But since xi - X2 £ H =» (sn , S21) - (S12, S22) <£ H

=> (sn -S12, S21-S22) ^ H - Si © S2

=> either sn -si2£ Si or S21-S22 £ S2 or both, which is a contradiction.

So <K xi+H) * <K x2+H) i.e. is 1-1.

(j> is onto:

Let(x'/)e^e^

=» x/ e , / e , x^ 3/
Si S>2

=> 3 Si € E(Si), s2 € E(S2) such that s = (si, s2) e E(Si) 0 E(S2) - E(H)

(si + Si), / = (s2 + S2) and <j>( s + H) = (si + Si, s2 + S2) - (x1, y/).
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<J> is onto. So <|> is isomorphism.]

Similarly as above note we get the isomorphism

E20 sH^)0E^)0...........0E^) which isaidealof
H Sx S2 Sk+1

E
H *

gThe Goldie dimension of — is at least k+1, a contradiction.
H

EThus - has infinite Goldie dimension.
H

Theorem 4.3.9: Let N be dgnr and E be a quasi- injective, finitely generated N-group. If E 

has A.C.C. on essential ideals, then E is weakly Noetherian.

EProof: Assume E has A.C.C. on essential ideals. Then by proposition 3.4.10 —— is
oOC^hJ

E Eweakly Noetherian. So -... ■ ■ cannot contain an infinite direct sum of ideals, i.e. —— has

finite Goldie dimension. So by proposition 4.3.8, E cannot contain an infinite direct sum 

SocE = ®^Mx. i.e. SocE is finite direct sum of simple ideals. Since every simple ideal is 

weakly Noetherian, by corollary 4.1.8 SocE is weakly Noetherian. Now if we consider the 

exact sequence

h E0 —» SocE —E —> -—— —* 0, SocE and ——— are weakly Noetherian, so bySoc(E) ’ Soc(E) 3 3

proposition 4.1.7 E is also weakly Noetherian.

For near-ring N with identity and M unital N-group if for every right ideal U of N and 

every N-homomorphism f: U —>M, there exists an element m in M such that f(a) = ma for 

all a in U implies M is injective then we get the following two results.
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Proposition 4.3.10: Let N be a near ring with unity and let E be a unital N-group.Then the 

direct sum Q = N © E is a quasi-injective N-group if and only if both N and E are 

injective.

Proof: The sufficiency is trivial. [ N, E injective =» N © E injective => N © E = Q quasi- 

injective(as injective => quasi-injective)]

Conversely if Q is quasi-injective, so are N and E since direct summands of quasi-injective 

N-group are quasi-injective. As N is quasi-injective, for every right ideal U of N and every 

N-homomorphism f: U —* N, there exists an element m in N such that f(a) = ma for all a 

in U. So N is injective.

Let f be any map of an ideal I of N into E. Writing the elements of Q as ordered pairs (n, 

e), n e N, e e E the correspondence (x,0) -»(0, f(x)) defined for all x e I is a map of an 

N-subgroup of Q into Q and therefore has an extension {: Q -» Q.

Setf/(l,0) = (s,n)

If x 61 then (0, f(x)) = ffoO) = f^fOjx = (sx, nx) i.e. f(x) = nx V x € I.

Thus E is injective.
\

Following is the corollary of theorem 4.2.6 with those same conditions.

Corollary 4.3.11: If J = 0 , A is a regular near-ring. Moreover if regular near-ring A is 

such that each finitely generated ideal of A is generated by idempotent, then Aa is 

injective.

Proof: A is a regular Near-ring .
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Let f : I -» A be any map of a ideal I into A. By IE we mean that N-subgroup of E 

generated by { Xm / X £ I, m £ E} and it follows that if x e IE then there exists mi, m2,

m3, ... ........ ,m„6E, Xj, X2, X3,................ Xn £ I such that such that x = 2?=iXj m;. We

consider a correspondence

x = 23U h mj Ef=i f(Xi)mi

If also y = 2j_j u. mf £ EE, p. £ I, m( £ E, j = 1, 2, 3,............ , t then the ideal generated
J J J J J

by Xj, X2, X3,............ , X„, pi, P2 , P3,..............., pn has the form e A, where e = e2 £ A

and then eX; = Xj, epj = Pj.

f(Xi) = f(e) Xj, f(p.) = f(e) p., i = 1,2,3,............n, j = 1,2,3,.............. , t

Consequently Ef=, f^i)^; = Sf=i f(e)X. m; = f(e)EjL, X; mj = f(e)x,

Similarly, 2j=1 f(p.)m/ = f(e)y, so that x -»£?=i f(X.)m. is a single valued correspondence,

0 is a map of IE in E. By quasi-injectivity 0 is induced by an element of A, which is also 

denoted by 0. Then (0X)(m) = 0(Xm) = f(X)(m) V X £ I, m £ E so that f(X) = 0X )VX£l.

So we conclude that A2 is injective.

4.4. SUPERHONESTY IN QUASI-INJECTIVE N-GROUPS:

In chapter 2 we have studied many properties and characteristics of superhonest 

near-ring groups. In this section we try to establish some characteristics of superhonest 

quasi-injective near-ring groups.
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Theorem 4.4.1:: If E is a quasi-injective N-group, Clx Tx(E) is super-honest in E implies 

Clx TX(E) = P, the smallest super-honest N-subgroup of E.

Proof: Since P contains Tn(E), so it contains Tx(E). [Since every superhonest N-subgroup 

contains Tn(E) by note 2.3.18(2) and Tn(E) contains TX(E)]

Then P is x-closed N-subgroup of E, therefore P = Clx (P) 3 Clx TX(E)) = Ty TX(E). [Since 

Clx TX(E) = T% TX(E) by proposition 2.3.23]

Also Tx Tx(E) 3 P, since P is the smallest superhonest N-subgroup of E.

Hence Clx T%{E) = P.

If sum of two N-subgroups is again an N-subgroup of an N-group then we get the following 

four results:

Theorem 4.4.2 If M is a x-closed ideal of an quasi-injective N-group E and Tn(E) c= M 

then M is super-honest ideal of E .

Proof: Let a e E \ M with na e M for some n e N.

Since M is a x-closed ideal of E, by corollary 4.3.6(i), E = M © Mc, where M° is a

complement N-subgroup of M in E, since M is x-closed implies essentially closed.
(

Then a = m + m7 for some me M and rr/e Mc.

Now m/= - m + a implies n(- m + a) = n(- m + a) - na + na = nm7e M fl Mc = 0.

But 0^m/ (for otherwise a = m e M) and m; g Tn(E) (Since M 3 Tn(E) and a g M), so n 

= 0. Hence M is super-honest in E.
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Theorem 4.4.3: If E is a quasi-injective N-group and Ty Tx(E) is ideal of E 

containing TN(E) then Ty TX(E) is super-honest in E.

Proof Since T% TX(E) is a %-dosed ideal of E and Ty TX(E) 3 Tn(E) , Tx Tx(E) is super- 

honest in E by theorem 4.4.2.

Note 4.4.4: From corollary 2.3.21 we know that if P is the smallest super-honest N- 

subgroup of an N-group E then f(P) e P for each N-endomorphism f of E.

Theorem 4.4.5: If E is a quasi-injeetive N-group with non trivial super-honest N- 

subgroups P' is a proper N-subgroup of E such that P dP then there exists an N- 

endomorphism f of E such that f(P') <z P'.

Proof: Let a e E - P', b e P'- P. Since P' 3 P 3 T(E), a and b are both not in Tn(E).

Then we have an N-homomorphism <}> from Nb to Na which is defined by <J>(nb) = na for 

each n e N.

Since, E is quasi-injective <j) can be extended to an N-endomorphism f on E.

But then a e Na = f(Nb) c f(P'). Since a & P', we have f(P') c P.

For the following results we assume the ideal character of x-closure of the N-subgroup 

generated by Tm(E).

Theorem 4.4.6: If E is an quasi-injective N-group, then the smallest super-honest N- 

subgroup P = Clx (D), where Clx (D) is the x-closure of the N-subgroup D generated by 

Tn(E).
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Proof: Since every super-honest N-subgroup of E contains TN(E)(hence contains D) and is 

a %-closed N-subgroup of E. [ by 2.3.13 and 2.3.11]

We have P = Cl* (P) a Cl* (D).

On the otherhand since TX(E) c Tn(E) c D c Cl* (D), by lemma 2.3.10, C1*(D) is an 

essential N-subgroup of Cl* Cl* (D) and D is an essentia! N-subgroup of Cl* (D).

Therefore D is an essential N-subgroup of Cl* Cl* (D).

Then Cl* C1*(D) c Cl* (D) [by proposition 2.3.23].

So Cl* Cl* (D) = Cl* (D) is %-closed in E.

Since Cl* (D) a Tn(E) by proposition 4.4.2, Cl* (D) is super-honest ideal in E.

Hence Cl* (D) a P.

.-. Cl* (D) = P.

Theorem 4.4.7 : If E is a semi-simple quasi-injective N-group then the smallest super- 

honest N-subgroup P = D where D is the N-subgroup of E generated by Tn(E) and Cl* (D) 

is an ideal of E.

Proof: Since E is a semi-simple, every ideal of E is a direct summand of E.

Again, E is quasi-injective, so P = C1*(D) by theorem 4.4.6.

But every N-subgroup of an semi-simple N-group is semi-simple. Thus D is direct 

summand of Cl* (D) and is an essential N-subgroup of Cl* (D). Hence D = Cl* (D) = P.
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4.5 SOME RELATIONS OF QUASI-INJECTIVITY WITH RELATIVE INJECTIVITY:

In this section we attempt to find some relations between weak singular quasi- 

injective N-groups and relative injective N-groups.

Definition4.5.1: A near-ring N is called Ql-near-ring if every quasi-injective N-group is 

injective.

Theorem 4.5.2: For a dgnr S3I-near-ring N, if every injective right N/K-group is injective 

as an N-group for ideal K of N we get the following conditions equivalent:

i. Every weak singular quasi- injective N-group is injective.

ii. Z(N) = 0 and direct sum of weak singular quasi-injective N-groups is injective. 

Proof: i.=>ii. Since N is S3I-near-ring, Z(N) = 0 by lemma 3.4.21.

From proposition 3.4.25, direct sum of weak singular injective N-groups is injective.

From given condition we get direct sum of weak singular quasi-injective N-groups is 

injective.

ii.:=>i. Let A be a weak singular quasi-injective N-group. E(A) is weak singular as 

proposition 3.4.17. By hypothesis A © E(A) is injective. So A is injective.

Theorem 4.5.3. For a near-ring N, is a Ql-near-ring implies every singular

quasi-injective N-group is injective.

Proof: If E is singular quasi-injective N -group then Soc(N). E = 0 and so E is quasi- 

injective N/g0c(N)"grouP- Whence E is injective as an ^/goc(N)'§rouP- So E is injective

as an N-group.
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Theorem 4.5.4: If every singular quasi-injective N-group is injective if and only if N is 

Ql-ring then ^/soc(n) is a Ql-near-ring.

Proof: If E is singular quasi-injective ^/soc(N)'§rouP’ ^ *s singular quasi-injective N 

-group. Thus E is injective as an N-group hence injective as an ^/s0c(N)"®rouP' ^i161106 

^/soc(N) is a near-ring all of whose singular quasi-injective ^/s0c(N) "§rouPs 816 

injective. So, ^/s0c(N) is a Ql-near-ring.


