Chapter 4

QUASI-INJECTIVE N-GROUPS

- 4.1 PREREQUISITES
- 4.2 ENDOMORPHISM NEAR- RING OF QUASI-INJECTIVE N-GROUPS
- 4.3 SOME PROPERTIES OF QUASI-INJECTIVE N-GROUPS
- 4.4 SUPERHONESTY IN QUASI-INJECTIVE N-GROUPS

.

4.5 RELATIVE INJECTIVITY AND QUASI-INJECTIVITY

4. QUASI-INJECTIVE N-GROUPS

This chapter deals with quasi-injective N-groups and near-ring groups.

4.1. PREREQUISITES:

In this section of this chapter we define the basic terms and results that are needed for the sequel.

Definition 4.1.1: For a right near- ring (N, +, .) and a corresponding N- group E, suppose there is an $x \in E$ such that $\{nx / n \in N\} = E$. Then E is a monogenic N - group and x is a generator.

Definition 4.1.2: An N-subgroup B of E is called fully invariant if for each N-homomorphism $f: E \to E$, $f(B) \subseteq B$.

Definition 4.1.3: A left ideal A of N is called small (strictly small) if N = B for each left ideal (N-subgroup) B such that N = A + B.

Since every left ideal is a left N-subgroup, a strictly small left ideal of N is also a small left ideal of N.

Definition 4.1.4: The intersection of all maximal ideals maximal as N-subgroups of N-group E is called radical of E and is denoted by J(E).

Definition 4.1.5: An N-group E is called irreducible if it has no proper non-zero N-subgroups.

Lemma 4.1.6 [K. Misra]: If the radical ideal J(N) is strictly small in N then the following conditions are equivalent-

(i) $Y \in J(N)$

(ii) 1-xy is left invertible for all $x \in N$

(iii) yM = 0 for any irreducible left N-group M.

Proposition 4.1.7: Let $0 \rightarrow A \rightarrow E \rightarrow B \rightarrow 0$ be a short exact sequence of N-groups where A is N-subgroup (ideal) of E. Then E is Noetherian (weakly Noetherian) if and only if both A and B are Noetherian (weakly Noetherian).

Proof: First let E be Noetherian.

Then since A is isomorphic to an N-subgroup of E, so by definition A is Noetherian.

Again let $g: E \rightarrow B$ be the N-epimorphism.

Then E/Kerg \cong B.

Kerg is ideal of E and E is Noetherian, so E/Kerg \cong B is Noetherian.

Conversely let A and B are both Noetherian, to show E is Noetherian.

If we assume A is an ideal of E and B = E/A. Proof of rest part is same as lemma 1.2.7.

If A is an N-subgroup of E, E/Kerg \cong B is Noetherian.

Imf = Kerg, Kerg is ideal of E:

Now, A is Noetherian and A/Kerf \cong Imf

A is Noetherian \Rightarrow A/Kerf is Noetherian \Rightarrow Imf is Noetherian \Rightarrow Kerg is Noetherian .

so E/Kerg, Kerg is Noetherian \Rightarrow E is Noetherian.

Corollary 4.1.8: If $E = E_1 \oplus E_2 \oplus \dots \oplus E_n$ i.e E is finite direct sum of ideals of Ngroup E then E is weakly Noetherian if and only if E_1 , E_2 , \dots \dots , E_n are weakly Noetherian. In [60] V. Seth and K. Tiwari proved that if N left dgnr, with identity and M right N-group then M is injective if and only if for every right ideal U of N and every N-homomorphism $f: U \rightarrow M$, there exists an element m in M such that f(a) = ma for all a in U. But in [48] A. Oswald claimed that converse of the above is not always true.

Theorem 4.1.9 [Seth, Tiwari]: N near-ring with identity and M N-group. If M is injective then for for every right ideal U of N and every N-homomorphism $f: U \rightarrow M$, there exists an element m in M such that f(a) = ma for all a in U.

Theorem 4.1.10: An N-group E is quasi-injective if and only if E is fully invariant N-subgroup of its injective hull.

Proof: Let $S = End_N \hat{E}$ be the set of N-endomorphisms of \hat{E} , \hat{E} injective hull of E,

where (f + g)e = f(e) + g(e) for $f, g \in S$ and $e \in \widehat{E}$.

First we assume E is fully invariant N-subgroup of \widehat{E} . i.e. $fE \subseteq E, \forall f \in S$.

Let M be an N-subgroup of E and t : $M \rightarrow E$ be an N-homomorphism. Then t must extend to some $f \in S$, so E is quasi-injective.

Next let N-group E be quasi-injective and $f \in S$. To show $fE \subseteq E$.

Restricting f, we get a map $k : E \cap f^{-1}(E) \rightarrow E$, i.e. f(x) = k(x) for $x \in E \cap f^{-1}(E)$

where $f^{-1}(E) = \{x \in \widehat{E} / f(x) \in E\}.$

Now $E \cap f^{-1}(E)$ is an N-subgroup of E, so by quasi-injectivity of E, k can be extended to an N-endomorphism t of E. i.e. $t(x) = k(x) \forall x \in E \cap f^{-1}(E)$.

Then t extends to a map $g \in S$ such that $g(E) \subseteq E$, so we get

$$g: \widehat{E} \rightarrow \widehat{E}$$
 with $g(x) = t(x), \forall x \in E$.

Also $(g - f)(E \cap f^{-1}(E)) = 0$.

For if $x \in E \cap f^{-1}(E)$, then $x \in E$ and $x \in \widehat{E}$ such that $f(x) \in E$ and

$$(g-f)(x) = g(x) - f(x) = 0$$
, since for $x \in E \cap f^{-1}(E)$, $g(x) = t(x) = k(x) = f(x)$.

Since $g(E) \subseteq E$ we get $E \cap (g - f)^{-1}E \subseteq (E \cap f^{-1}(E)) \subseteq ker(g - f)$, where

$$(g-f)^{-1}E = \{x \in \widehat{E} / (g-f)(x) \in E\}.$$

Now, $x \in E \cap (g - f)^{-1}E \Rightarrow x \in E$ and $x \in (g - f)^{-1}E$.

As
$$x \in E \Rightarrow g(x) \in gE \subseteq E$$
.
So $f(x) = g(x) - (g(x) - f(x)) \in E$
 $\Rightarrow x \in E \cap f^{-1}(E)$
Thus $E \cap (g - f)^{-1}E \subseteq (E \cap f^{-1}(E)) \subseteq \ker(g - f)$ [since $(g - f)(E \cap f^{-1}(E)) = 0$]
 $\Rightarrow (g - f)E \cap E = 0$
Since $x \in (g - f)E \cap E \Rightarrow x = (g - f)y ; x \in E, y \in E$
 $\Rightarrow y \in (g - f)^{-1}E$
 $\Rightarrow y \in E \cap (g - f)^{-1}E$
 $\Rightarrow y \in ker(g - f)$
 $\Rightarrow (g - f)y = 0.$
Now $(g - f)E \cap E = 0 \Rightarrow (g - f)E = 0$, because $E \leq_e \widehat{E}$.
Hence $f(E) = g(E) \subseteq E$
 $\Rightarrow f(E) \subseteq E$.

.

,

Theorem 4.1.11: If E is quasi-injective then its direct summands are also quasi-injective.

Proof: Let the normal N-subgroup A be a direct summand of E. To show A is quasi-

Consider the direct sum decomposition $E = A \oplus B$ for some normal N-subgroup B.

Then by proposition 1.4.13 $\widehat{E} = \widehat{A} \oplus \widehat{B}$ and $S = End_N \widehat{E}$.

If $p \in S$ is the projection onto \widehat{A} , then $pSp = End_N \widehat{A}$.

Now SE \subseteq S by theorem 4.1.10, whence pSpE \subseteq pE and so pSpA \subseteq A.

So again by theorem 4.1.10, A is quasi-injective.

Theorem 4.1.12 [Clay]: For a near-ring (N, +, .) with identity 1, suppose E is a monogenic unitary N-group with generator x and suppose that $T = \{m \in n / Ann (x)m \in Ann (x)\}$ is a subgroup of (N, +). Then the N-endomorphisms $End_N E$ of N- group E forms a right near ring where ($f \oplus g$) (x) = f (x) + g (x) and (f.g) (x) = f(g(x)).

Also E is an End _N E –group defined by

 $\varphi: E \times End_N E \rightarrow E$ by $\varphi(m, f) = m, f = f(m)$.

4.2 Endomorphism near ring of quasi-injective N-groups:

In this section we investigate various characteristics of endomorphism near-ring of quasi-injective N-groups. We also study some aspects of Jacobson radical of endomorphism near-ring of quasi-injective N- groups.

Throughout this section of this chapter we assume E satisfies the condition of theorem 4.1.12. and N is a dgnr.

If \widehat{E} - injective hull of E, we consider $S = End_N \widehat{E}$

 ϕ : $\widehat{E} \times S \longrightarrow \widehat{E}$ by $\phi(m, f) = m$. f = f(m), $m \in \widehat{E}$, $f \in S$, then \widehat{E} is an S-group.

For this S-group we get the following:

Proposition 4.2.1: ES is an N-subgroup of \widehat{E} .

Let $a, b \in ES$

 $a = \sum x_i f_i$, $b = \sum y_j f_j$, $a - b = \sum x_i f_i - \sum y_j f_j \in ES$

Let $n \in N$, $a \in ES$ to show $na \in ES$

 $a = \sum x_i f_i$

 $na = n \sum x_i f_i$

 $= n \sum f(x_i)$

- $= (s_1 + s_2 + s_3 + \dots + s_n) \sum f_i(x_i)$
- $= s_1 \sum f_i(x_i) + s_2 \sum f_i(x_i) + \ldots + s_n \sum f_i(x_i)$
- $=\sum s_1 f_i(x_i) + \sum s_2 f_i(x_i) + \dots + \sum s_n f_i(x_i)$
- $= \sum f_i(s_1 x_i) + \sum f_i(s_2 x_i) + \dots \dots + \sum f_i(s_n x_i)$
- $= \sum (s_1 x_i) f_i + \sum (s_2 x_i) f_i + \dots + \sum (s_n x_i) f_i$
- \in ES [:: (s_j x_i) \in E]

Proposition 4.2.2:

- a. ES is quasi- injective
- b. ES is the intersection of all quasi-injective N- subgroups of \widehat{E} containing E. So ES is the smallest N-subgroup of \widehat{E} containing E.
- c. E is quasi- injective if and only if E = ES.

Proof:

(a) Let M be an N-subgroup of ES & $f: M \to ES$ we take the inclusion map $i: ES \to \widehat{E}$ Then the composite map $h = if: M \to \widehat{E}$.

Since \widehat{E} is injective, so h can be extended by some $\lambda: \widehat{E} \longrightarrow \widehat{E}$ such that

$$x.\lambda = \lambda (x) = x.h \text{ for } x \in M$$
$$= x. (if)$$
$$= (if) (x)$$
$$= i(f(x))$$
$$= f(x)$$
$$= x.f, \text{ where } x.f = f(x) \in ES$$

Thus f is induced by $\lambda \in S$.

Now let $g \in S$. Then for $y = \Sigma x_i g_i \in ES$

 $(\Sigma x_i g_i) \lambda = \Sigma x_i (g_i \lambda) \in ES$ $: g_i \lambda \in S$

 \therefore (ES) $\lambda \subseteq$ ES.

 λ induces $\overline{\lambda}$: ES \rightarrow ES

i.e. λ can be restricted by some $\overline{\lambda}$: ES \rightarrow ES such that

 $x\overline{\lambda} = x$. λ for $x \in ES$

 $\therefore x \overline{\lambda} = x. \text{ f for } x \in M \qquad (:: x. \lambda = x. \text{ f for } x \in M \text{ and } M \subseteq ES)$

 \Rightarrow f is induced by $\overline{\lambda}$: ES \rightarrow ES \Rightarrow ES is quasi-injective.

(b) Let P be any quasi-injective N-subgroup of \widehat{E} containing E.

We wish to show $ES = \cap P$.

Since by (a) ES is quasi-injective. So $\cap P \subseteq ES$.

Now to show ES $\subseteq \cap P$. We will show ES $\subseteq P$. So it is sufficient to show that $P\alpha \subseteq P$

```
\forall \alpha \in S.
```

Since if $\forall \alpha \in S$, $P\alpha \subseteq P$ then $PS \subseteq P$.

But $E \subseteq P \Rightarrow ES \subseteq PS$ [$: E \subseteq P \Longrightarrow E\lambda \subseteq P\lambda$]

 \Rightarrow ES \subseteq P.

To prove this we see that

 $Q(\alpha) = \{ x \in P / x \alpha \in P \}$ is an N-subgroup of P.

Let x, $y \in Q(\alpha) \Rightarrow x\alpha \in P$, $y\alpha \in P$.

 $x\alpha - y\alpha \in P.$

 $\Rightarrow \alpha(x) - \alpha(y) \in P$

 $\Rightarrow \alpha(x-y) \in P$

 $\Rightarrow x-y \in Q(\alpha)$

Next to show N Q(α) \subseteq Q(α)

i.e. for $n \in N$, $x \in Q(\alpha)$ to show $nx \in Q(\alpha)$.

 $x \in Q(\alpha) \Rightarrow x \in P$ such that $x \cdot \alpha \in P$

 $\because x \in P, n \in N \Rightarrow nx \in P (\because NP \subseteq P)$

$$(nx).\alpha = \alpha(nx) = n\alpha(x) = n(x.\alpha) \in P$$
 (: NP \subseteq P)

 \Rightarrow nx \in Q(α).

 $\therefore Q(\alpha)$ is an N-subgroup of P.

We have only to show that $Q(\alpha) = P$ $\forall \alpha \in S$, since then $y \in P \Rightarrow y \in Q(\alpha) \Rightarrow y.\alpha \in P \Rightarrow$

$$P\alpha \subseteq P$$

Since $q \rightarrow q\alpha$, $q \in Q(\alpha) = Q$ a map of Q into P and since P is quasi-injective so there exists

 $\alpha_{l}: P \rightarrow P \quad \text{such that } q \; \alpha_{l} = q \; \alpha \quad \forall \; q \in Q$

Since \widehat{E} is injective, $\exists \alpha' \in S$ such that $x \alpha' = x \alpha_1 \quad \forall x \in P$

Since $P \alpha' \subseteq P$

```
If P(\alpha' - \alpha) = 0 then P\alpha' = P\alpha
```

So $P\alpha \subseteq P$

So if $Q(\alpha) \neq P$ then $P(\alpha' - \alpha) \neq 0$

As we know $E \leq_e \widehat{E} \Rightarrow P \leq_e \widehat{E}$

(: if $A(\neq 0) \leq_{S} \widehat{E} \& P \cap A = 0$ then $E \cap A = 0$ contradicts $E \leq_{e} \widehat{E}$)

Now $P(\alpha' - \alpha)$ is N-subgroup of \widehat{E}

a, b $\in P(\alpha' - \alpha)$ $a = p_1(\alpha' - \alpha)$ $b = p_2(\alpha' - \alpha)$ $a - b = p_1(\alpha' - \alpha) - p_2(\alpha' - \alpha)$ $= (p_1 - p_2)(\alpha' - \alpha) \in P(\alpha' - \alpha)$ $[\because (\alpha' - \alpha) \in S]$ For $n \in N, x \in P(\alpha' - \alpha)$ let $x = p_1(\alpha' - \alpha)$ Now $n p_1(\alpha' - \alpha) = n(\alpha' - \alpha) p_1$ $= n \alpha'(p_1) - n \alpha(p_1)$ $= (\alpha' - \alpha) (np_1)$ $= (np_1)(\alpha' - \alpha) \in P(\alpha' - \alpha)$ $\therefore P(\alpha' - \alpha)$ N-subgroup of \widehat{E} .

Consequently we have $P(\alpha' - \alpha) \cap P \neq 0$

But if x, $0 \neq y \in P$ are such that $y = x (\alpha' - \alpha) \in P(\alpha' - \alpha) \cap P$

Then since $x \alpha' = x \alpha_1$ $\therefore x \in P$, $y = x(\alpha' - \alpha) = (\alpha' - \alpha)(x) = (\alpha' x - \alpha x) = x\alpha' - x\alpha$

 $\therefore x \, \alpha = x \, \alpha_1 - y \, \in \, P$

Then $x \in Q(\alpha)$ so that $x \alpha = x \alpha'$ and so y = 0, a contradiction. Which establishes (b).

(c) Since ES is the intersection of all quasi-injective N-subgroups of Ê , containing E.
 r E is quasi-injective ⇒ ES ⊆ E. And E ⊆ ES is obvious by inclusion map.

 \therefore ES = E

Definition 4.2.3: (P, E, f) denotes a N-monomorphism $f : E \rightarrow P$ and is called an extension of E.

An extension (P, E, f) of an N-group E is a minimal quasi-injective extension in case P is quasi-injective and the following condition is satisfied:

If (A, E, g) is any quasi-injective extension of E, then there exists an N-monomorphism

 $\phi: P \to A$ such that $P \to \phi$ f gE

commutes i.e. $g = \phi f$.

Proposition 4.2.4: ES is minimal quasi-injective extension of E. Any two minimal quasi-injective extensions are equivalent.

Proof: Let (A, E, g) be any quasi-injective extension of E.

Let $\widehat{A} = E(A) \& \Omega = Hom_N(\widehat{A}, \widehat{A})$

Then by proposition 4.2.2 A $\Omega \subseteq A$.

Since ES is an essential extension of E, the N-monomorphism $g: E \to \widehat{A}$ can be extended to a monomorphism (also denoted by g) of ES in \widehat{A} .

$$[:: if f: A \xrightarrow{mono} E, E \text{ injective }, A \leq_e B, \text{ then } f \text{ extends to } f': B \xrightarrow{mono} E]$$

Since g(ES) is quasi-injective .

 $[\because g(ES) \cong ES, \because Kerg = 0 \ (f : A \xrightarrow{mono} B, A \cong f(A))]$

Then $(g(ES)) \Omega \subseteq g(ES)$ and we conclude that $(B) \Omega \subseteq B$ where $B = g(ES) \cap A \subseteq g(ES)$

$$g^{-1}$$
 (B) \subseteq (ES)

 $[:: AB \subseteq B, AC \subseteq C, A(B \cap C) = AB \cap AC \subseteq B \cap C]$

Since $B \subseteq (B)\Omega$ is obvious.

∴ by proposition 4.2.2. B is quasi-injective.

It follows that g^{-1} (B) is a quasi-injective extension of $E \subseteq ES$.

Since ES is the smallest quasi-injective extension of E contained in \hat{E} , we conclude that

 $g^{-1}(B) = ES$. So $B = g(ES) \subseteq A$. This establishes that ES is a minimal quasi-injective extension.

Next if (A, E, g) is also a minimal quasi-injective extension of E, then (A, E, g) is also equivalent to ES.

ES minimal quasi-injective extension of E. (A, E, g) also quasi-injective extension of E. By definition for $E \xrightarrow{\text{mono } \phi} ES$, $E \xrightarrow{\text{mono } f} A$, there exists $ES \xrightarrow{\text{mono } \phi} A$ s.t. the diagram

Again (A, E, g) is minimal quasi-injective extension of E. ES is also quasi-injective extension of E. By definition for $E \xrightarrow{\text{mono } g} A$, $E \xrightarrow{\text{mono } f} ES$ there exists

Again $g = \varphi f \Rightarrow g = \varphi \omega g$

So I = $\phi \omega$

Thus ω and φ both are invertible which implies both ω and φ are isomorphic.

Hence $ES \cong A_{\Box}$

Definition 4.2.5: A near-ring N is said to be a regular near-ring if for every element $x \in N$, there exists an element $y \in N$ such that xyx = x.

Theorem 4.2.6: Let E be quasi-injective N-group let $\Lambda = \text{Hom}(E, E)$ and let $J = J(\Lambda)$ denote the Jacobson radical of Λ and is strictly small in Λ . Then

 $J = \{ \lambda \in \Lambda / E \supseteq_e \text{Ker } \lambda \}$. If for $\gamma \in J$, $\lambda \in \Lambda$, $\gamma \lambda \in J$ then Λ / J is a regular near ring.

Where addition of two N-subgroups is again N-subgroup of E and N need not be dgnr.(\supseteq_e denotes essential extension)

Proof: Let $I = \{\lambda \in \Lambda / E \supseteq_e Ker \lambda\}$

If $\lambda \in \Lambda$, $\mu, \gamma \in I$, then $\operatorname{Ker}(\mu + \gamma) \supseteq \operatorname{Ker} \mu \cap \operatorname{Ker} \gamma$

Since $x \in \text{Ker } \mu \cap \text{Ker } \gamma \implies x \in \text{Ker } \mu \& x \in \text{Ker } \gamma \implies \mu(x) = 0 \& \gamma(x) = 0$

 $\Rightarrow (\mu + \gamma)(x) = 0 \Rightarrow x \in \text{Ker}(\mu + \gamma)$

Since $\operatorname{Ker} \mu \cap \operatorname{Ker} \gamma$ is an essential N-subgroup.

Therefore Ker $(\mu + \gamma)$ is essential N-subgroup of E.

 $x \in \text{Ker } \gamma \implies \gamma(x) = 0.$

Now for $\mu, \lambda \in \Lambda$, $\gamma \in I$, $(\mu(\lambda + \gamma) - \mu \lambda)(x) = (\mu(\lambda + \gamma))(x) - (\mu \lambda)(x)$

 $= (\mu\lambda)(x) + 0 - (\mu\lambda)(x) = 0 [since \gamma(x) = 0.].$

- $\therefore x \in \text{Ker}(\mu(\lambda + \gamma) \mu \lambda). \text{ And so Ker } \gamma \subseteq \text{Ker}(\mu(\lambda + \gamma) \mu \lambda).$
- $\Rightarrow (\mu(\lambda + \gamma) \mu \lambda) \in \mathbf{I}.$

 \therefore I is left ideal of Λ .

However if $\lambda \in I$, Ker $(1 + \mu\lambda) = 0$ for Ker $\lambda \cap$ Ker $(1 + \mu\lambda) = 0$.

For if, $\lambda \in I$ we have $E \supseteq_e \operatorname{Ker} \lambda$. $x \in \operatorname{Ker} \lambda \cap \operatorname{Ker}(1 + \mu\lambda) \Longrightarrow \lambda(x) = 0$ and $(1 + \mu\lambda)(x) = 0$

 $\Rightarrow x + \mu(\lambda(x)) = 0 \Rightarrow x + \mu(0) = 0 \Rightarrow x = 0. Again \ \lambda \in I \Rightarrow E \supseteq_e Ker \ \lambda \Rightarrow Ker(1 + \mu\lambda) = 0.$

 $1 + \mu\lambda : E \rightarrow (1 + \mu\lambda) E$ is an isomorphism $\Rightarrow \exists g \in \Lambda$ such that $g(1 + \mu\lambda) = I$, so $(1 + \mu\lambda)$ has a left inverse $\forall \lambda \in I \& \forall \mu \in \Lambda$.

So $\lambda \in J$ [by theorem 4.1.6].

This establishes that $I \subseteq J$.

1

Next let λ be arbitrary element of Λ , let L be a complement N-subgroup of E corresponding to $K = Ker(\lambda)$ and consider the correspondence $\lambda x \to x \quad \forall x \in L$.

If $\lambda x = \lambda y$ with x, $y \in L$, then $\lambda(x - y) = 0$ and then $x - y \in K \cap L = 0$

Since E is quasi-injective, the map $\lambda x \to x$ of λL in L is induced by some $\theta \in \Lambda$.

If $u = x + y \in L + K$, $x \in L$, $y \in K$, then

 $(\lambda - \lambda \theta \lambda)(u) = \lambda(x) - \lambda \theta \lambda(x) = \lambda(x) - \lambda(x) = 0$

 $\Rightarrow \lambda - \lambda \theta \lambda = 0 \dots * * * [\lambda \theta \lambda(x) = \lambda \theta(x) = \lambda(x) = x, \text{ as for } x \in L \quad \theta(x) = \lambda(x) = x]$

Since $E \supseteq_e L + K$ {as $K \subseteq L + K$ } and since $Ker(\lambda - \lambda\theta\lambda) \supseteq L + K$, we conclude that $\lambda - \lambda\theta\lambda \in I$.

Also I is an ideal. Thus Λ is a regular modulo I.

Now to show J = I. If $\lambda \in J$ and $\theta \in \Lambda$ is chosen so that $u = (\lambda - \lambda \theta \lambda) \in I$, $(1 - \theta \lambda)^{-1}$ exists. (Since J is Jacobson redical)

Therefore $(1 - \theta \lambda)^{-1} u = (1 - \theta \lambda)^{-1} (\lambda - \lambda \theta \lambda) = (1 - \theta \lambda)^{-1} (1 - \theta \lambda) \lambda = \lambda$ and $\lambda \in I$ [\because I is a left ideal]. Thus J = I is as asserted.

From *** $\overline{\lambda\theta\lambda} = \overline{\lambda} \text{ in } \Lambda/I$.

 $\therefore \Lambda/I$ is regular ring. $\therefore \Lambda/J$ is regular ring.

4.3 SOME PROPERTIES OF QUASI-INJECTIVE N-GROUPS:

This section contains some properties of quasi-injective N-groups related to essentially closed N-subgroups and complement N-subgroups. In this section we attempt to study various characteristics of quasi-injective N-groups satisfying chain conditions. In the third chapter we have investigated various characteristics of N-groups satisfying ascending chain condition on essential ideals and also investigated almost weakly Noetherian Ngroups. Using the results proved in chapter 3, we try to establish new relations in quasiinjective N-groups satisfying chain conditions. Let M be an N-subgroup of E.

We consider $F = \{ P/P \text{ N-subgroup of } E, P \cap M = 0 \}$

 $F \neq \phi$, (0) $\in F$

 $C = \{P_i / P_i \in F\}$ is a chain in F.

 $Let K = \cup P_i \quad [x, y \in \cup P_i \quad \Rightarrow x \in P_i, y \in P_j$

If i > j, $x, y \in P_j \quad \therefore x - y \in P_j \Rightarrow x - y \in \cup P_i$.

Again $n \in N$, $x \in \bigcup P_i \implies x \in P_j$ for some j, then $nx \in P_j \implies nx \in \bigcup P_i$

 $:: Pi \cap M = 0 \quad \forall i$

 $(\bigcup_i \operatorname{Pi}) \cap M = \bigcup_i (\operatorname{Pi} \cap M) = 0 \& \bigcup_i \operatorname{Pi} \leq_S E$

So by Zorn's lemma the N-subgroup K is maximal in the set of those N-subgroups P satisfying

 $P \cap N = 0$. Then K is said to be complement of M in E.

Definition 4.3.1: The N-subgroup K is maximal in the set of those N-subgroups P satisfying

 $P \cap N = 0$ is said to be complement of M in E.

A complement N-subgroup (ideal) of E is a N-subgroup A which is a complement in E of some N-subgroup (ideal) B.

The following is an example of an N-group where sum of two N-subgroups is again an N-subgroup.

•	0	a	b	с
0	0	0	0	0
a	0	a	b	c
b	0	0	0	0
c	0	С	b	с

Example 4.3.2: $N = \{0, a, b, c\}$ is the Klein's four group with multiplication

is a near-ring . Here $A = \{0, a\}, B = \{0, b\}, C = \{0, c\}$ are the non-trivial N-subgroups of _NN and sum of two N-subgroups is also an N-subgroup.

If sum of two N-subgroups is again an N-subgroup of an N-group we get following three lemmas and the corollary.

Lemma 4.3.3: If M is an N-subgroup of E and if K is any complement of M in E, then there exists a complement Q of K in E such that $Q\supseteq M$. Furthermore any such Q is a maximal essential extension of M in E.

Proof: Let $F = \{ I | I \cap K = \{0\}, M \subseteq I \}$. Since $M \in F$. $F \neq \phi$

Let $C = \{C_i | i \in \lambda, \lambda \text{ index, } C_i \in F\}$ be a chain.

$$Q = U C_i$$

.

Now $(\bigcup_{i \in \lambda} Ci) \cap K = \bigcup_{i \in \lambda} (c, \bigcap k) = 0 \quad \forall i \ [: C_i \cap K = 0 \ \forall i]$

& $M \subset \bigcup_{i \in \lambda} C_i \quad \forall i \ , M \subseteq C_i$

So by Zorn's lemma Q∈F, maximal element exists. Thus Q in the first sentence exists.

Now to prove second assertion.

Let T be any non-zero N-subgroup of Q and assume that $T \cap M = 0$

Since $T \cap K = 0$ $[Q \leq_C K, T \leq_S Q]$

: the sum $K_1 = T + K$ is direct and K_1 properly contains K.

Since $K_1 \cap M = 0$ [If possible let $K_1 \cap M \neq 0$. $K_1 \cap M = (T + K) \cap M$

Let $t + k = n \in (T + K) \cap M \Rightarrow k \in K \cap (M + T) \subseteq K \cap Q \Rightarrow k = 0 \Rightarrow n = t \in M \cap T$ contradiction to $M \cap T = 0$. Therefore $K_1 \cap M = 0$]

This contradicts the definition of K.

This proves that Q is an essential extension of M.

If P is an N-subgroup of E properly containing Q, then $P \cap K \neq 0$ and

 $(P \cap K) \cap M = P \cap (K \cap M) = P \cap 0 = 0.$

Thus P is not an essential extension of M, completing the proof.

Lemma 4.3.4: The essentially closed N-subgroups of an N-group E coincide with the complement N-subgroups of E. If M and K are complement N-subgroups and if K is a complement of M in E then M is a complement of K in E.

Proof: Let M be a essentially closed N-subgroup and let K is any complement of M. Then by lemma 4.3.3 there exists a complement Q of K such that $M \subseteq Q$. This Q is maximal essential extension of M in E. But M is essentially closed, so it has no proper essential extension. \therefore M = Q is a complement N-subgroup.

Next let M be complement of an N-subgroup P. Then \exists a complement K of M which contains P.

i.e. $\stackrel{\text{max}}{M} \cap P = (0) \dots (1)$ $\stackrel{\text{max}}{K} \cap M = (0) \text{ such that } P \subset K.$

If possible let $M' \leq_S E$ such that $M \subseteq M' \& K \cap M' = (0)$

Then $P \cap M' = (0) :: P \subset K$, which contradicts (1).

: M is also maximal such that. $K \cap M = (0)$. : M is complement of K. Then M is essentially closed by lemma 4.3.3.

This also proves the last statement.

Theorem 4.3.5: Let E be quasi-injective and let M be a essentially closed N-subgroup, then for each N-subgroup K of E, N-homomorphism $w : K \to M$ can be extended to N-homomorphism $u : E \to M$.

Proof: Let $F = \{L \mid w \text{ is extended to a map of } T \text{ into } M \text{ for } T \leq E \text{ containing } L\}$

By Zorn's lemma we can assume that K is such that w cannot be extended to a map of T into M for any N-subgroup T of E which properly contains K.

Since E is quasi-injective, w is induced by a map $u : E \to E$ & let L complement of M in E.

Suppose u(E)⊈ M.

Since M is essentially closed. M is a complement of L.

Therefore, since $u(E) + M \supset M$, we see that

 $(\mathbf{u}(\mathbf{E}) + \mathbf{M}) \cap \mathbf{L} \neq \mathbf{0}.$

Let $0 \neq x = a + b \in u(E) + M) \cap L$

 $a \in u(E), b \in M$

If $a \in M$ then $x \in M \cap L = 0$, a contradiction.

Therefore $a \notin M$ and $a = x - b \in L + M$

Now $T = \{y \in E / u(y) \in L + M\}$ is an N-subgroup of E containing K.

 $: x \in K \Rightarrow w(k) \in M \Rightarrow u(k) \in M \ \forall \ k \in K.$

∴ T contains K.

If $y \in E$ is such that u(y) = a then $y \in T$, but $y \notin K$ since $a \notin M$.

 $[\because y \in T \Rightarrow u(y) = a \in L \& y \in K \Rightarrow w(y) \in M \Rightarrow u(y) \in M \forall y \in K, \text{ contradiction to } a \notin M]$

Let π denote the projection of L + M on M. Then π u is a map of T in M and

 $\pi \mathbf{u}(\mathbf{y}) = \mathbf{u}(\mathbf{y}) = \mathbf{w}(\mathbf{y}) \quad \forall \mathbf{y} \in \mathbf{K} \quad [:: \mathbf{y} \in \mathbf{K} \Rightarrow \mathbf{w}(\mathbf{y}) \in \mathbf{M} \quad \Rightarrow \mathbf{u}(\mathbf{y}) \in \mathbf{M} \quad \forall \mathbf{y} \in \mathbf{K}]$

Thus πu is a proper extension of w, a contradiction.

 \therefore u(E) \subseteq M, so u is the desired extension.

Cor 4.3.6: Let E be quasi-injective N-group then

- If M is any essentially closed N-subgroup of E, then M is direct summand of E and M is quasi-injective. Also M has a complement in E.
- (2) If P is any N-subgroup of E, then there exists a quasi-injective essential extension of P contained in E.

(3) Each minimal quasi-injective extension of an N-group K is an essential extension of K.

Proof: (1) If $e: E \to M$ is the extension given by the theorem 4.3.5 of the injection map

 $M \rightarrow M$ then $E = M \bigoplus Ker(e)$ where $e(m) = \begin{cases} m & m \in M \\ 0 & m \notin M \end{cases}$

So that M is direct summand of E. \therefore M is quasi-injective by theorem 4.1.11.

Moreover Ker(e) is complement of M. Since $M \cap Ker(e) = (0) \dots \dots (1)$

M essentially closed \Rightarrow M complement of some N-subgroup K.

 \Rightarrow K is complement of M.

i.e.
$$\stackrel{\text{max}}{\mathsf{M}} \cap \stackrel{\text{max}}{\mathsf{K}} = (0)....(2)$$

 $(1)\&(2) \Rightarrow Ker(e) \subset K$

Let $(0 \neq) x \in K \Rightarrow x \notin M$

 $\Rightarrow e(x) = 0$ [by definition of e]

 $\Rightarrow x \in Ker(e).$

 $:: K \subset Ker(e)$

- $\therefore \operatorname{Ker}(e) = K \Longrightarrow \operatorname{Ker}(e) \text{ complement of } M.$
- (2) Let $F = \{I / P \subseteq I, P \leq_e I\}$

 $P \in F$. $\therefore F \neq \phi$

Let $\{ C_i / C_i \in F \}$ be a chain in F.

 $M = \bigcup_i C_i, P \subseteq C_i \forall i$

$$\Rightarrow P \subseteq \bigcup_{i} C_{i} P \leq_{e} C_{i} \quad \forall i$$

$$\Rightarrow P \leq_{e} \bigcup_{i} C_{i} [P \cap A_{i} \neq 0 \forall i, A_{i} \leq C_{i}. \text{ Since } P \cap (\bigcup_{i} A_{i}) = \bigcup_{i} (P \cap A_{i}) \neq 0$$

$$\bigcup A_{i} \leq \bigcup C_{i}]$$

If possible $M = \bigcup_i C_i \leq_e K$

 $\therefore P \leq_e M \leq_e K \Rightarrow P \leq_e K$, contradicts maximality of M.

So by Zorn's lemma P is contained in essentially closed N-subgroup M which is essential extension of P and M is quasi-injective by (1).

(3) Let A be any minimal quasi-injective extension of an N-group K. Let K is contained in quasi-injective essential extension B by (2)

i.e. $K \leq_e B$, B essentially closed.

So
$$A \subseteq B$$

As B is essential extension of K, A is also essential extension of K.

Thus every minimal quasi-injective extension of N-group K is an essential extension of K.

Definitions 4.3.7: An N-group E is said to have finite Goldie dimension if it does not contain an infinite direct sum of non-zero ideals of E.

For an N-group E if there exists an integer n such that E has an independent family of n non-zero ideals, but no independent families of more than n non-zero ideals, then integer n is called the Goldie dimension of E.

The proof of the following proposition follows the same line of proof as N. V. Dung [22].

Proposition 4.3.8: Let E be a finitely generated quasi-injective left N-group. Suppose E contains an infinite direct sum of non zero independent family of ideals $H = \bigoplus_{\lambda} H_{\lambda}$. Then the factor N- group E/H has infinite Goldie dimension.

Proof: Assume E/H has finite Goldie dimension k.

Since the index set Λ is infinite, we find infinite subsets $\Lambda_1, \Lambda_2, \ldots, \Lambda_{k+1}$ such that

 $\Lambda_i \cap \Lambda_j = 0$ for $i \neq j$ and $\Lambda = \Lambda_1 \cup \dots \cup \cup \Lambda_{k+1}$

For $S_j = \bigoplus_{\Lambda_1} H_{\lambda}$ (J = 1, 2, ..., k+1) we get $H = S_1 \oplus S_2 \oplus ... \oplus S_{k+1}$

 $[\text{ Since } H_{\lambda} \leq_e S_j = \bigoplus_{\Lambda_i} H_{\lambda} \text{ , for } \lambda \in \Lambda_j \text{ , as } x_i \in H_{\lambda_i}.$

 $\mathbf{x}_i = \mathbf{0} + \mathbf{0} + \dots + \mathbf{0} + \mathbf{x}_i + \mathbf{0} + \dots + \mathbf{0} + \mathbf{0} \in \bigoplus_{\Lambda_i} H_{\lambda}$.]

 \Rightarrow S_i's are independent, as H_i's are independent by proposition 1.3.6.

 $\mathbf{x} \in \mathbf{H} = \bigoplus_{\Lambda} \mathbf{H}_{\lambda} \Longrightarrow \mathbf{x} = \sum_{i \in \lambda} \mathbf{x}_i$ unique.

 $= \sum_{i_1 \in \lambda_1} x_{i_1} + \sum_{i_2 \in \lambda_2} x_{i_2} + \dots \dots + \sum_{i_{k+1} \in \lambda_{k+1}} x_{i_{k+1}}$

 $[:: \Lambda = \Lambda_1 U \dots \dots U \Lambda_{k+1}, \Lambda_I \cap \Lambda_J = 0 \text{ where } \sum_{i_n \in \lambda_n} x_{i_n} \text{ unique}]$

 $\varepsilon \ S_1 \oplus S_2 \oplus \oplus S_{k^+ l}.$

Then we have $E(H) = E(S_1) \oplus E(S_2) \oplus \ldots \oplus E(S_{k+1})$ by proposition 1.4.13.

 $[:: S_j \leq E(S_j) \text{ and } \{S_j\} \text{ independent} \Longrightarrow E(S_j) \text{ independent by proposition 1.3.6.}]$

 $E(S_j) \neq S_j$ for each j.

[Note: Now for $H = S_1 \oplus S_2$, $E(H) = E(S_1) \oplus E(S_2)$ we show $\frac{E(H)}{H} \cong \frac{E(S_1)}{S_1} \oplus \frac{E(S_2)}{S_2}$,

where H, S₁, S₂ ideal of E.

Proof: Define a map $\phi : \frac{E(H)}{H} \longrightarrow \frac{E(S_1)}{S_1} \oplus \frac{E(S_2)}{S_2}$ by $\phi(x + H) = (s_1 + S_1, s_2 + S_2)$ where $x = (s_1, s_2) \in E(H)$ with $s_1 \in E(S_1)$, $s_2 \in E(S_2)$.

 ϕ is well-defined:

Let $(x_1 + S_1, y_1 + S_2) \neq (x_2 + S_1, y_2 + S_2) \in \frac{E(S_1)}{S_1} \oplus \frac{E(S_2)}{S_2}$ where $(x_1, y_1) = h_1 \in E(H), (x_2, y_2) = h_2 \in E(H)$.

To show $h_1 + H \neq h_2 + H$.

Now $(x_1 + S_1, y_1 + S_2) \neq (x_2 + S_1, y_2 + S_2)$

 \Rightarrow either $x_1 + S_1 \neq x_2 + S_1$ or $y_1 + S_2 \neq y_2 + S_2$ or both.

 \Rightarrow either $x_1 - x_2 \notin S_1$ or $y_1 - y_2 \notin S_2$ or both.

If possible let $h_1 + H = h_2 + H$

 \Rightarrow h₁ - h₂ \in H

 $\Rightarrow (x_1, y_1) - (x_2, y_2) \in H$

 $\Rightarrow (x_1-x_2,\,y_1-y_2) \in H = S_1 \oplus S_2$

 \Rightarrow x₁ - x₂ \in S₁ or y₁ - y₂ \in S₂, a contradiction, so h₁ + H \neq h₂ + H.

So ϕ is well-defined.

φ is 1-1:

Let $(\neq \overline{0}) x_1 + H \neq x_2 + H \in \frac{E(H)}{H}$

i.e. $x_1, x_2 \in E(H)$ but $\notin H$ and $x_1 - x_2 \notin H$.

Let $x_1 = (s_{11}, s_{21}), x_2 = (s_{12}, s_{22})$ with $s_{11}, s_{12} \in E(S_1)$ and $s_{21}, s_{22} \in E(S_2)$.

 $\phi(x_1 + H) = (s_{11} + S_1, s_{21} + S_2), \phi(x_2 + H) = (s_{12} + S_1, s_{22} + S_2)$

If possible let $\phi(x_1 + H) = \phi(x_2 + H)$

 $\Rightarrow (s_{11} + S_1, s_{21} + S_2) = (s_{12} + S_1, s_{22} + S_2)$

i.e.
$$s_{11} + S_1 = s_{12} + S_1$$
 and $s_{21} + S_2 = s_{22} + S_2$

 \Rightarrow s₁₁ -s₁₂ \in S₁ and s₂₁-s₂₂ \in S₂

But since $x_1 - x_2 \notin H \Longrightarrow (s_{11}, s_{21}) - (s_{12}, s_{22}) \notin H$

 $\Rightarrow (s_{11} - s_{12}, s_{21} - s_{22}) \notin H = S_1 \oplus S_2$

⇒ either $s_{11} - s_{12} \notin S_1$ or $s_{21} - s_{22} \notin S_2$ or both, which is a contradiction.

So $\phi(x_1 + H) \neq \phi(x_2 + H)$ i.e. ϕ is 1-1.

 ϕ is onto:

Let
$$(x', y') \in \frac{E(S_1)}{S_1} \oplus \frac{E(S_2)}{S_2}$$

 $\Rightarrow x' \in \frac{E(S_1)}{S_1}, y' \in \frac{E(S_2)}{S_2}, x' \neq y'$
 $\Rightarrow \exists s_1 \in E(S_1), s_2 \in E(S_2) \text{ such that } s = (s_1, s_2) \in E(S_1) \oplus E(S_2) = E(H)$
 $x' = (s_1 + S_1), y' = (s_2 + S_2) \text{ and } \phi(s + H) = (s_1 + S_1, s_2 + S_2) = (x', y').$

 \therefore ϕ is onto. So ϕ is isomorphism.]

Similarly as above note we get the isomorphism

 $\frac{E(H)}{H} \cong \frac{E(S_1)}{S_1} \oplus \frac{E(S_2)}{S_2} \oplus \dots \oplus \bigoplus \frac{E(S_{k+1})}{S_{k+1}} \text{ which is a ideal of } \frac{E}{H}.$

The Goldie dimension of $\frac{E}{H}$ is at least k+1, a contradiction.

Thus $\frac{E}{H}$ has infinite Goldie dimension.

Theorem 4.3.9: Let N be dgnr and E be a quasi- injective, finitely generated N-group. If E has A.C.C. on essential ideals, then E is weakly Noetherian.

Proof: Assume E has A.C.C. on essential ideals. Then by proposition $3.4.10 \frac{E}{Soc(E)}$ is weakly Noetherian. So $\frac{E}{Soc(E)}$ cannot contain an infinite direct sum of ideals. i.e. $\frac{E}{Soc(E)}$ has finite Goldie dimension. So by proposition 4.3.8, E cannot contain an infinite direct sum SocE = $\bigoplus_{\lambda}M_{\lambda}$. i.e. SocE is finite direct sum of simple ideals. Since every simple ideal is weakly Noetherian, by corollary 4.1.8 SocE is weakly Noetherian. Now if we consider the exact sequence

 $0 \rightarrow \text{SocE} \rightarrow \text{E} \rightarrow \frac{\text{E}}{\text{Soc(E)}} \rightarrow 0$, SocE and $\frac{\text{E}}{\text{Soc(E)}}$ are weakly Noetherian, so by proposition 4.1.7 E is also weakly Noetherian.

For near-ring N with identity and M unital N-group if for every right ideal U of N and every N-homomorphism $f: U \rightarrow M$, there exists an element m in M such that f(a) = ma for all a in U implies M is injective then we get the following two results. **Proposition 4.3.10**: Let N be a near ring with unity and let E be a unital N-group. Then the direct sum $Q = N \oplus E$ is a quasi-injective N-group if and only if both N and E are injective.

Proof: The sufficiency is trivial. [N, E injective \Rightarrow N \oplus E injective \Rightarrow N \oplus E = Q quasiinjective(as injective \Rightarrow quasi-injective)]

Conversely if Q is quasi-injective, so are N and E since direct summands of quasi-injective N-group are quasi-injective. As N is quasi-injective, for every right ideal U of N and every N-homomorphism $f: U \rightarrow N$, there exists an element m in N such that f(a) = ma for all a in U. So N is injective.

Let f be any map of an ideal I of N into E. Writing the elements of Q as ordered pairs (n, e), $n \in N$, $e \in E$ the correspondence $(x,0) \rightarrow (0, f(x))$ defined for all $x \in I$ is a map of an N-subgroup of Q into Q and therefore has an extension $f': Q \rightarrow Q$.

Set f'(1,0) = (s,n)

If $x \in I$ then (0, f(x)) = f'(x,0) = f'(1,0)x = (sx, nx) i.e. $f(x) = nx \forall x \in I$.

Thus E is injective.

Following is the corollary of theorem 4.2.6 with those same conditions.

Corollary 4.3.11: If J = 0, Λ is a regular near-ring. Moreover if regular near-ring Λ is such that each finitely generated ideal of Λ is generated by idempotent, then Λ_{Λ} is injective.

Proof: Λ is a regular Near-ring .

Let $f: I \rightarrow \Lambda$ be any map of a ideal I into Λ . By IE we mean that N-subgroup of E generated by $\{\lambda m / \lambda \in I, m \in E\}$ and it follows that if $x \in IE$ then there exists $m_1, m_2, m_3, \ldots, m_n \in E, \lambda_1, \lambda_2, \lambda_3, \ldots, \lambda_n \in I$ such that such that $x = \sum_{i=1}^n \lambda_i m_i$. We consider a correspondence

$$\mathbf{x} = \sum_{i=1}^{n} \lambda_i \mathbf{m}_i \rightarrow \sum_{i=1}^{n} \mathbf{f}(\lambda_i) \mathbf{m}_i$$

If also $y = \sum_{j=1}^{t} \mu_j m'_j \in IE$, $\mu_j \in I$, $m'_j \in E$, j = 1, 2, 3, ..., t then the ideal generated by $\lambda_1, \lambda_2, \lambda_3, ..., \lambda_n$, $\mu_1, \mu_2, \mu_3, ..., \mu_n$ has the form $e \Lambda$, where $e = e^2 \in \Lambda$ and then $e\lambda_i = \lambda_i$, $e\mu_j = \mu_j$.

$$f(\lambda_i) = f(e) \lambda_i$$
, $f(\mu_j) = f(e) \mu_j$, $i = 1, 2, 3, ..., n, j = 1, 2, 3, ..., t$

Consequently $\sum_{i=1}^{n} f(\lambda_i) m_i = \sum_{i=1}^{n} f(e) \lambda_i m_i = f(e) \sum_{i=1}^{n} \lambda_i m_i = f(e) x$,

Similarly, $\sum_{j=1}^{t} f(\mu_j) m'_j = f(e)y$, so that $x \to \sum_{i=1}^{n} f(\lambda_i) m_i$ is a single valued correspondence, θ is a map of IE in E. By quasi-injectivity θ is induced by an element of Λ , which is also denoted by θ . Then $(\theta\lambda)(m) = \theta(\lambda m) = f(\lambda)(m) \quad \forall \lambda \in I, m \in E$ so that $f(\lambda) = \theta \lambda$) $\forall \lambda \in I$.

So we conclude that Λ_{λ} is injective.

.

4.4. SUPERHONESTY IN QUASI-INJECTIVE N-GROUPS:

In chapter 2 we have studied many properties and characteristics of superhonest near-ring groups. In this section we try to establish some characteristics of superhonest quasi-injective near-ring groups.

١

Theorem 4.4.1 : : If E is a quasi-injective N-group, $Cl_{\chi} T_{\chi}(E)$ is super-honest in E implies $Cl_{\chi} T_{\chi}(E) = P$, the smallest super-honest N-subgroup of E.

Proof: Since P contains $T_N(E)$, so it contains $T_{\chi}(E)$. [Since every superhonest N-subgroup contains $T_N(E)$ by note 2.3.18(2) and $T_N(E)$ contains $T_{\chi}(E)$]

Then P is χ -closed N-subgroup of E, therefore $P = Cl_{\chi}(P) \supset Cl_{\chi} T_{\chi}(E)) = T_{\chi} T_{\chi}(E)$. [Since $Cl_{\chi} T_{\chi}(E) = T_{\chi} T_{\chi}(E)$ by proposition 2.3.23]

Also $T_{\chi} T_{\chi}(E) \supset P$, since P is the smallest superhonest N-subgroup of E.

Hence $\operatorname{Cl}_{\chi} T_{\chi}(E) = P$.

If sum of two N-subgroups is again an N-subgroup of an N-group then we get the following four results:

Theorem 4.4.2 If M is a χ -closed ideal of an quasi-injective N-group E and $T_N(E) \subseteq M$ then M is super-honest ideal of E.

Proof: Let $a \in E \setminus M$ with $na \in M$ for some $n \in N$.

Since M is a χ -closed ideal of E, by corollary 4.3.6(i), E = M \oplus M^c, where M^c is a complement N-subgroup of M in E, since M is χ -closed implies essentially closed.

Then a = m + m' for some $m \in M$ and $m' \in M^c$.

Now m' = -m + a implies $n(-m + a) = n(-m + a) - na + na = nm' \in M \cap M^c = 0$.

But $0 \neq m'$ (for otherwise $a = m \in M$) and $m' \notin T_N(E)$ (Since $M \supset T_N(E)$ and $a \notin M$), so n = 0. Hence M is super-honest in E.

Theorem 4.4.3: If E is a quasi-injective N-group and $T_{\chi} T_{\chi}(E)$ is ideal of E containing $T_N(E)$ then $T_{\chi} T_{\chi}(E)$ is super-honest in E.

Proof Since $T_{\chi} T_{\chi}(E)$ is a χ -closed ideal of E and $T_{\chi} T_{\chi}(E) \supset T_{N}(E)$, $T_{\chi} T_{\chi}(E)$ is superhonest in E by theorem 4.4.2.

Note 4.4.4: From corollary 2.3.21 we know that if P is the smallest super-honest N-subgroup of an N-group E then $f(P) \subseteq P$ for each N-endomorphism f of E.

Theorem 4.4.5: If E is a quasi-injective N-group with non trivial super-honest N-subgroups P' is a proper N-subgroup of E such that $P' \supset P$ then there exists an N-endomorphism f of E such that $f(P') \not\subset P'$.

Proof: Let $a \in E - P'$, $b \in P' - P$. Since $P' \supset P \supset T(E)$, a and b are both not in $T_N(E)$.

Then we have an N-homomorphism ϕ from Nb to Na which is defined by $\phi(nb) = na$ for each $n \in N$.

Since, E is quasi-injective ϕ can be extended to an N-endomorphism f on E.

But then $a \in Na = f(Nb) \subseteq f(P')$. Since $a \notin P'$, we have $f(P') \subseteq P$.

For the following results we assume the ideal character of χ -closure of the N-subgroup generated by $T_N(E)$.

Theorem 4.4.6: If E is an quasi-injective N-group, then the smallest super-honest N-subgroup $P = Cl_{\chi}$ (D), where Cl_{χ} (D) is the χ -closure of the N-subgroup D generated by $T_{N}(E)$.

Proof: Since every super-honest N-subgroup of E contains $T_N(E)$ (hence contains D) and is a χ -closed N-subgroup of E. [by 2.3.13 and 2.3.11]

We have $P = Cl_{\chi}(P) \supseteq Cl_{\chi}(D)$.

On the other hand since $T_{\chi}(E) \subseteq T_N(E) \subseteq D \subseteq Cl_{\chi}$ (D), by lemma 2.3.10, $Cl_{\chi}(D)$ is an essential N-subgroup of Cl_{χ} Cl_{χ} (D) and D is an essential N-subgroup of Cl_{χ} (D).

Therefore D is an essential N-subgroup of Cl_{χ} Cl_{χ} (D).

Then $\operatorname{Cl}_{\chi} \operatorname{Cl}_{\chi}(D) \subseteq \operatorname{Cl}_{\chi}(D)$ [by proposition 2.3.23].

So $Cl_{\chi} Cl_{\chi} (D) = Cl_{\chi} (D)$ is χ -closed in E.

Since $\operatorname{Cl}_{\chi}(D) \supseteq \operatorname{T}_{N}(E)$ by proposition 4.4.2, $\operatorname{Cl}_{\chi}(D)$ is super-honest ideal in E.

Hence $\operatorname{Cl}_{\gamma}(D) \supseteq P$.

$$\therefore$$
 Cl _{χ} (D) = P.

Theorem 4.4.7 : If E is a semi-simple quasi-injective N-group then the smallest superhonest N-subgroup P = D where D is the N-subgroup of E generated by $T_N(E)$ and $Cl_{\chi}(D)$ is an ideal of E.

Proof: Since E is a semi-simple, every ideal of E is a direct summand of E.

Again, E is quasi-injective, so $P = Cl_{y}(D)$ by theorem 4.4.6.

But every N-subgroup of an semi-simple N-group is semi-simple. Thus D is direct summand of Cl_{χ} (D) and is an essential N-subgroup of Cl_{χ} (D). Hence $D = Cl_{\chi}$ (D) = P.

4.5 SOME RELATIONS OF QUASI-INJECTIVITY WITH RELATIVE INJECTIVITY:

In this section we attempt to find some relations between weak singular quasiinjective N-groups and relative injective N-groups.

Definition4.5.1: A near-ring N is called QI-near-ring if every quasi-injective N-group is injective.

Theorem 4.5.2: For a dgnr S³I-near-ring N, if every injective right N/K-group is injective as an N-group for ideal K of N we get the following conditions equivalent:

- i. Every weak singular quasi- injective N-group is injective.
- ii. Z(N) = 0 and direct sum of weak singular quasi-injective N-groups is injective.

Proof: <u>i. \Rightarrow ii.</u> Since N is S³I-near-ring, Z(N) = 0 by lemma 3.4.21.

From proposition 3.4.25, direct sum of weak singular injective N-groups is injective. From given condition we get direct sum of weak singular quasi-injective N-groups is injective.

<u>ii. \Rightarrow i.</u> Let A be a weak singular quasi-injective N-group. E(A) is weak singular as proposition 3.4.17. By hypothesis A \oplus E(A) is injective. So A is injective.

Theorem 4.5.3. For a near-ring N, N/Soc(N) is a QI-near-ring implies every singular quasi-injective N-group is injective.

Proof: If E is singular quasi-injective N –group then Soc(N). E = 0 and so E is quasiinjective $N/_{Soc(N)}$ -group. Whence E is injective as an $N/_{Soc(N)}$ -group. So E is injective as an N-group. **Theorem 4.5.4:** If every singular quasi-injective N-group is injective if and only if N is QI-ring then N/Soc(N) is a QI-near-ring.

Proof: If E is singular quasi-injective $N/_{Soc(N)}$ -group, then E is singular quasi-injective N –group. Thus E is injective as an N-group hence injective as an $N/_{Soc(N)}$ -group. Whence $N/_{Soc(N)}$ is a near-ring all of whose singular quasi-injective $N/_{Soc(N)}$ -groups are injective. So, $N/_{Soc(N)}$ is a QI-near-ring.