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4. QUASI-INJECTIVE N-GROUPS

This chapter deals with quasi-injective N-groups and near-ring groups.
4.1. PREREQUISITES:

In this section of this chapter we define the basic terms and results that are needed for the
sequel.
Definition 4.1.1: For a right near- ring (N, +, .) and a corresponding N- group E, suppose

there is an x € E such that {nx / n € N} = E. Then E is a monogenic N - group and x is a

generator.

Definition 4.1.2: An N-subgroup B of E is called fully invariant if for each N-

homomorphism f:E — E, f{(B) ¢ B.

Definition 4.1.3: A left ideal A of N is called small (strictly small) if N = B for each left

ideal (N-subgroup) B such that N = A + B.

Since every left ideal is a left N-subgroup, a strictly small left ideal of N is also a small

left ideal of N.

Definition 4.1.4: The intersection of all maximal ideals maximal as N-subgroups of N-

group E is called radical of E and is denoted by J(E).

Definition 4.1.5: An N-group E is called irreducible if it has no proper non-zero N-

subgroups.

Lemma 4.1.6 [K. Misra]: If the radical ideal J(N) is strictly small in N then the following

conditions are equivalent-
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@) Y € J(N)
(ii)  1—xyisleft invertble forallx € N

(iliy yM =0 for any irreducible left N-group M.

Proposition 4.1.7: Let 0 -> A - E — B — 0 be a short exact sequence of N-groups
where A is N-subgroup (ideal) of E. Then E is Noetherian (weakly Noetherian) if and only

if both A and B are Noetherian (weakly Noetherian).
Proof: First let E be Noetherian .

Then since A is isomorphic to an N-subgroup of E, so by definition A is Noetherian .

Again let g : E —> B be the N-epimorphism.

Then E/Kerg = B.

Kerg is ideal of E and E is Noetherian, so E/Kerg = B is Noetherian.

Conversely let A and B are both Noetherian, to show E is Noetherian.

If we assume A is an ideal of E and B = E/A. Proof of rest part is same as lemma 1.2.7.
If A is an N-subgroup of E, E/Kerg = B is Noetherian.
Imf = Kerg, Kerg is ideal of E:
Now, A is Noetherian and A/Kerf = Imf
A is Noetherian = A/Kerfis Noetherian = Imf is Noetherian = Kerg is Noetherian .

so E/Kerg, Kergis Noetherian = E is Noetherian .

Corollary 4.1.8: IfE=E; ® E;® ... ... ... ® E, i.e E is finite direct sum of ideals of N-
group E then E is weakly Noetherian if and only if E; , Ej, ... ... ... , En are weakly

Noetherian.
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In [60] V. Seth and K. Tiwari proved that if N left dgnr , with identity and M right
N-group then M is injective if and only if for every right ideal U of N and every N-
homomorphism f: U — M, there exists an element m in M such that f(a) = ma for all a in

U. But in [48] A. Oswald claimed that converse of the above is not always true.

Theorem 4.1.9 [Seth, Tiwari]: N near-ring with identity and M N-group. If M is injective
then for for every right ideal U of N and every N-homomorphism f: U — M, there exists an

element m in M such that f(a) = ma for all a in U.

Theorem 4.1.10: An N-group E is quasi-injective if and only if E is fully invariant N-

subgroup of its injective hull.

Proof: Let S = End y E be the set of N-endomorphisms of E, E injective hull of E,
where (f + g)e = f(e) + g(e) for f, g € Sand e E.

First we assume E is fully invariant N-subgroup of E. i.e. fECE, V f eS.

Let M be an N-subgroup of E and t : M — E be an N-homomorphism. Then t must extend

to some f €8, so E is quasi-injective.

Next let N-group E be quasi-injective and f €S. To show fE c E.

Restricting f, we getamapk : E m fY(E)-E, i.e. f(x) =k(x) for xe Enf'(E)
where f}(E) = {x € E/ f(x) € E}.

Now E N £(E) is an N-subgroup of E, so by quasi-injectivity of E, k can be extended to an

N-endomorphism t of E. i.e. t(x) =k(x) V x € E N { '(E).

Then t extends to a map g €S such that g(E) < E, so we get
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g:E - Ewithgx)=t(x),Vx eE.
Also (g - ) Enf(E))=0.
For if xe E N £'(E), then xe E and xe E such that f(x) € E and
(g - D (x) = g(x) — f(x) = 0, since for xe En f(E), g(x) = t(x) = k(x) = f(x).
Since g(E)c EwegetEn(g—0)"'BEc (ENnfl(E) c ker(g — f), where

(g-D"'E= {x e E/(g-f)(x) € E}.

Now,xe En(g-'E = xe Eandxe (g-1)'E.
Asxe E=> g(x) e gEcE.

So f(x) = g(x) - (g(x) - f(x)) € E

= xe ENf(E)

Thus EN (g - ) 'Ec (E N (E)) c ker(g - f) [since (g — HH(E N (E)) = 0]

=>(g-HENE=0

Since xe (g-DENE=>x=(g-f)y;xeE, yeE

=ye@-HE

=>yeEn(g-0"'E

=yeker(g-1)

=(g-Hy=0.

Now (g~ E NE =0 =(g-HE =0, because E <, E.

Hence f(E) = g(E) c E

= f(E) ¢ E.
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Theorem 4.1.11: If E is quasi-injective then its direct summands are also quasi-injective.

Proof: Let the normal N-subgroup A be a direct summand of E. To show A is quasi-"

injective.
Consider the direct sum decomposition E = A @ B for some normal N-subgroup B.
Then by proposition 1.4.13E=A®B and S=EndnE.
Ifp e Sisthe projelction onto A, then pSp =End y A.
Now SE < S by theorem 4.1.10, whence pSpE < pE and so pSpA c A.
So again by theorem 4.1.10, A is quasi-injective.

Theorem 4.1.12 [Clay]: For a near-ring (N, +, .) with identity 1, suppose E is a
monogenic unitary N-group with generator x and suppose that T = { m € n / Ann (X)m €
Ann (x)} is a subgroup of (N, +). Then the N-endomorphisms Endyn E of N- group E forms

a right near ring where (f @ g) (x) =f(x) + g (x) and (f.g) (x) = f(g(x)).
Also E is an End y E —group defined by

@:E XEndyE— Eby ¢ (m.f) = m.f = f(m).

4.2 Endomorphism near ring of quasi-injective N-groups:

In this section we investigate various characteristics of endomorphism near-ring of
quasi-injective N-groups. We also study some aspects of Jacobson radical of

endomorphism near-ring of quasi-injective N- groups.
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Throughout this section of this chapter we assume E satisfies the condition of

theorem 4.1.12. and N is a dgnr.
If E- injective hull of E, we consider S=End yE

$:ExS—Ebyd (m,f) =m.f=f(m),meE, feS, then Eisan S-group.

For this S-group we get the following:
Proposition 4.2.1: ES is an N-subgroup of E.
Leta, b € ES

a=yxf,b=Yyifj, a-b=2xfi —Yyf, €ES
Letn €N, a € ES to show na € ES

a=Yyxf

na=n Yxf;

=n Y f(xi)

=(sp+spts3t ... ... ... + sp) Yfi(xi)

= s13fi(xi) + a2 fi(xi) +..o ool a2 fi(X1)

:st fi(xi) + ESZ fi(xi) +... .t an fl(xi)
=Yfi(s1 X)) + 2fi(s2 %) + ... ... .o + Xfi(sn X))
xz (st Xi) f; +Z ( 1) x;)fi'i‘ cee aan ene +Z (Sn xi)fl

EES [~ (s5ixi)EE]
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Proposition 4.2.2:

a. ES is quasi- injective
b. ES is the intersection of all quasi-injective N- subgroups of E containing E. So ES
is the smallest N-subgroup of E containing E.

c. Eisquasi- injective if and only if E=ES .
Proof:
(a) Let M be an N-subgroup of ES & f: M — ES we take the inclusion mapi: ES — E
Then the composite map h=if : M — E.
Since E is injective, so h can be extended by some A: E — E such that

x.A=2(x)=x.h forx eM
= x. (if)
= (i) (x)
= i(f(x))
= f(x)
=xf, where x.f =f(x) € ES

Thus f'is induced by A € S.

Now let g €S. Then fory =X xg; € ES
(ZTxg) A =Zxigld)e€ES gl €S
~ (ES) A C ES.

Ainduces 1 :ES — ES
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i.e. A can be restricted by some 1 :ES — ES such(that

x4 =x. A forxeES

~“xXA =xfforxeM (vx.A=x.fforxe Mand M C ES)
= fisinduced by X : ES = ES =>ES is quasi-injective.

(b) Let P be any quasi-injective N-subgroup of E containing E.
We wish to show ES = NP.
Since by (a) ES is quasi-injective. So NP € ES.

Now to show ES € N P, We will show ES € P. So it is sufficient to show that Pa € P

Vo € S.

Sinceif Va € S,Po € P then PS € P.
ButECP=ESCPS [+vECP=>E]lCP]]
= ESCP.

To prove this we see that

Q(a)={xeP/xaeP } isan N-subgroup of P.
Letx,y € Q(a) = xa € P, yo € P.

X0 —ya € P.

= a(x)—ofy) EP

= a(x—y)€P

= x—y € Q(a)

Next to show N Q(a) & Q(a)
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i.e. for n € N, x € Q(a) to show nx € Q(a).
x € Q(a) ® x € Psuchthat x.o € P
“XxeP,neN=>neP(“NPCP)
(nx).a =a(nx) =na(x) =nx.0) € P (* NP S P)
= nx € Qu).
~Q(a) is an N-subgroup of P.

We have only to show that Q(o) =P VaeS,sincethenyeP=>ye Q@)= yaeP =

Pa CP
Since q — qa, q € Q(a) = Q a map of Q into P and since P is quasi-injective so there exists
a;:P—-P suchthatqa;=qo VqeQ
Since E is injective , 3 o/ € S such that x a’¥ X0 VxeP
Since P o/ € P
If P(o'~0) = 0 then Po’ = Po.
SoPa €SP
So if Q(0) # P then P(o/—a) # 0
AsweknowE <. E=>P<.E
(~if A#0)<sE & PN A=0thenE n A =0 contradicts E <. E)

Now P(o/—0) is N-subgroup of E
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a, b € P(o/—0)
a=pi(d/~a) b=py(d—a)
ab= pl(a’-——a) — pa(o/—0)
=@E—p)(@-0) eP(0'~0) [+ (@~0)eS]
ForneN,x e P(d—a) letx =p;(d/—a)
Now n p; (a/ —a) =n (o/—a) p;
=nd (p1) ~no(pr)
=d (ap)) —a@py)
= (o/=0) (up)
= (p1)(0'~) € P(o'~a)
« P(o/—0)) N-subgroup of E .
Consequently we have P(a/—a) NP #0
Butifx, 0#y e P are such that y = x (¢'—a) e P(¢’~0) N P
Then since x o = x o vxeP,y=x(-o)= (o/—0)(x) = (a’x—ax) = xa/—xa
sXa=xo0;-yeP
Then x € Q(a) so that x o = x o/ and so y = 0, a contradiction. Which establishes (b).
(c) Since ES is the intersection of all quasi-injective N-subgroups of E , containing E.

E is quasi-injective = ES € E. And E € ES is obvious by inclusion map.

~ES=E
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Definition 4.2.3: (P, E, f) denotes a N-monomorphism f: E — P and is called an extension

of E.

An extension (P, E, f) of an N-group E is a minimal quasi-injective extension in case P is

quasi-injective and the following condition is satisfied:

If (A, E, g) is any quasi-injective extension of E, then there exists an N-monomorphism

¢ : P — A such that P (o) A

commutes i.e. g = ¢f.

Proposition 4.2.4: ES is minimal quasi-injective extension of E. Any two minimal quasi-

injective extensions are equivalent.
Proof: Let (A, E, g) be any quasi-injective extension of E.
Let A=E(A) & Q =Homn(A, A)
Then by proposition 4.2.2 AQ CA.

Since ES is an essential extension of E, the N-monomorphism g : E — A can be extended

to a monomorphism (also denoted by g) of ES in A.
mono mono
[+ iff: A— E, E injective, A <, B, then f extends to f: B — E]
Since g(ES) is quasi-injective .

[+ g(ES) = ES,~ Kerg =0 (f: A — B, A = f(A)) ]
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Then (g(ES)) Q& € g(ES) and we conclude that (B) Q €B where B = g(ES) n A € g(ES)
g' (B)C (ES)
[+ABEB,ACCSC,ABNC)=ABNACEBNC]
Since B € (B)Q is obvious.
~ by proposition 4.2.2. B is quasi-injective.
It follows that g (B) is a quasi-injective extension of E CES.
Since ES is the smallest quasi-injective extension of E contained in E, we conclude that

g'(B) = ES. So B = g(ES) C A. This establishes that ES is a minimal quasi-injective

extension.

Next if (A, E, g) is also a minimal quasi-injective extension of E, then (A, E, g) is

also equivalent to ES.

ES minimal quasi-injective extension of E. (A, E, g) also quasi-injective extension of E.

f
By definition for E e, ES, E e, A, there exists ES Towe A s.t. the

diagram

E commutes i.e. g = of.

Again (A, E, g) is minimal quasi-injective extension of E. ES is also quasi-injective

mono g mono
N

extension of E. By definition for E »A, E » ES there exists
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mono @ .
ES ——— A such that the diagram

A — 5 ES

V.

commutes. That is f= wg.
Now f=0g = f= wof
Sol=we
Again g = of = g = pog
Sol=¢w
Thus o and ¢ both are invertible which implies both ® and ¢ are isomorphic.

Hence ES = A

Definition 4.2.5: A near-ring N is said to be a regular near-ring if for every element xe N,

there exists an element ye N such that xyx = x.

Theorem 4.2.6: Let E be quasi-injective N-group let A= Hom(E, E) and let J = J(A)

denote the Jacobson radical of A and is strictly small in A. Then
J={1€ NE2cKerA}.Iffory€J, A€ A,yA€Jthen A/Jisaregular near ring.

Where addition of two N-subgroups is again N-subgroup of E and N need not be

dgnr.( 2, denotes essential extension)
Proof: LetI={A € A/E 2.Ker 1}
IfA€e A u,y €1, thenKer(u +y) 2 Keru nKery

Sincex EKeru NKery = x€Keru& xe€Kery= u(x)=0&yx)=0
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=U+y)X)=0=x ngr(u+y)

Since Keru N Ker y is an essential N-subgroup.

Therefore Ker (u + y) is essential N-subgroup of E.

x€EKery = y(x)=0.
Now for g,4 € A,y €L, (A +y)— p )X = @A +y)x)—( 1 )x)

= (uA)x) + 0 — (pA)(x)=0[since y(x)=0.] .

~xEKer( u(A+y)—ul).And soKery € Ker( p(A +y)— u A).

A +y)-pAeL

~ 1is left ideal of A.

However if A € I, Ker(1 + u4) =0 for Ker A N Ker(1 +ul) =0.
Forif, A € Iwehave E 2.Ker A. x € Ker A n Ker(l +ud) = A(x)=0and (1 + u)(x) =0
D xtu(Ax)=0=>x+u0)=0=>x=0.Again1 € = E 2. Ker 4 = Ker(1 + ui) =0.

1+ud:E— (1+upd)E isan isomorphism = 3 ge A such that g(1 +ud) =1, so (1 + uk)

has aleftinverse VA €1 &V u € A.
So 4 €] [by theorem 4.1.6].
This establishes that I € J.

Next let A be arbitrary element of A, let L be a complement N-subgroup of E corresponding

to K = Ker(A) and consider the correspondence Ax - x Vx€L.
If 2x =2y withx,y € L, then A(x ~y)=0and thenx -y €K NL=0

Since E is quasi-injective, the map Ax = x of AL in L is induced by some 8 € A.
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Ifu=x+y€eL+K,x€L,y €K, then
(A = 2AB1)(w) =A(x) — AOA(x) =A(x) —A(x) =0
= A—=A0A=0....%** [AOAX)=A0X)=A(X)=x, asforx €L O0(x)=A(x)=x]

Since E 2. L +K {as K € L + K} and since Ker(A — A02) 2 L + K, we conclude that
A—-2ABAEL

Also I is an ideal. Thus A is a regular modulo 1.

NowtoshowJ=LIfA€Jand 8 € A is chosen so thatu= (A — A6}) € I, (1 — 63)"!

exists. (Since J is Jacobson redical)

Therefore (1 — 8 'u=(1 —O0)'A—A00) = (1 — 601 -6 A=A and A €1 lisa

left ideal]. Thus J =1 is as asserted.
From *** ABA=2AinA/l.

~ A/l isregular ring. ~ A/] is regular ring.

4.3 SOME PROPERTIES OF QUASI-INJECTIVE N-GROUPS:

This section contains some properties of quasi-injective N-groups related to
essentially closed N-subgroups and complement N-subgroups. In this section we attempt to
study various characteristics of quasi-injective N-groups satisfying chain conditions. In the
third chapter we have investigated various characteristics of N-groups satisfying ascending
chain condition on essential ideals and also investigated almost weakly Noetherian N-
groups. Using the results proved in chapter 3, we try to establish new relations in quasi-

injective N-groups satisfying chain conditions.



135

Let M be an N-subgroup of E.

We consider F = { P/ P N-subgroup of E, P N M = 0}

F#¢,(0)€EF

C={P/P;€F}isachaininF.

LetK=UP; [x,yeUP;, =>x€P,y€EP

Ifi>j,x,y€P; ~x—y€P; x—y€UP;

Agann€N,x€UP; =x€P; forsomej,thennx €P; = nx €UP; ]
“PinM=0 Vi

U;Ph)nM=U;(PinM)=0 & U;Pi<sE

~U;Pi€C

So by Zorn’s lemma the N-subgroup K is maximal in the set of those N-subgroups P

satisfying
P NN =0. Then K is said to be complement of M in E.

Definition 4.3.1: The N-subgroup K is maximal in the set of those N-subgroups P

satisfying
P NN =0 is said to be complement of M in E.

A complement N-subgroup (ideal) of E is a N-subgroup A which is a complement in E of

some N-subgroup (ideal) B.

The following is an example of an N-group where sum of two N-subgroups is again an N-

subgroup.
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Example 4.3.2: N = {0, a,b,c} is the Klein’s four group with multiplication

0 a b c
0 |0 0 0 0
a 0 a b c
b |0 0 0 0
c 0 c b c

is a near-ring . Here A = {0, a}, B = {0, b}, C = {0, c} are the non-trivial N-subgroups of

NN and sum of two N-subgroups is also an N-subgroup.

If sum of two N-subgroups is again an N-subgroup of an N-group we get following three

lemmas and the corollary.

Lemma 4.3.3: If M is an N-subgroup of E and if K is any complement of M in E, then
there exists a complement Q of K in E such that Q2M. Furthermore any such Q is a

maximal essential extension of M in E.

Proof: Let F={I/InNK={0}, MC1}.SinceMEF.F# ¢
Let C = {Ci/i € A, A index, C;€F} be achain.
Q=U(;

Now (Uia Ci)nK = J(c,Nk)=0 Vi [+ C,NK=0 Vi]

1€l

&Mc |JC Vi, Mecc,

led

So by Zorn’s lemma Q€F, maximal element exists. Thus Q in the first sentence exists.
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Now to prove second assertion.

Let T be any non-zero N-subgroup of Q and assume that TNM = 0

SinceTNK=0 [Q<cK, T<sQ]

~ the sum K; = T + K is direct and K, properly contains K.

Since KinM =0 [Ifpossible let KiNM#0.KinM=(T+K)nM

Lett+k=n€T+K)NM=>keKNM+T)SKNQ=>k=0=>n=teMNT

contradiction to M N T = 0. Therefore Ky NnM=0]

This contradicts the definition of K.

This proves that Q is an essential extension of M,

If P is an N-subgroup of E properly containing Q, then P n K # 0 and

PNK)NM=PnENM)=Pn0=0.

Thus P is not an essential extension of M, completing the proof.

Lemma 4.3.4: The essentially closed N-subgroups of an N-group E coincide with the

complement N-subgroups of E. If M «’:\Ifld K are complement N-subgroups and if K is a

)
complement of M in E then M is a complement of K in E.

Proof: Let M be a essentially closed N-subgroup and let K is any complement of M. Then

by lemma 4.3.3 there exists a complement Q of K such that M € Q. This Q is maximal

essential extension of M in E. But M is essentially closed, so it has no proper essential

extension.
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~ M =Q is a complement N-subgroup.

Next let M be complement of an N-subgroup P. Then 3 a complement K of M which

contains P.
max
iee. MNP=).......... n

KM = (0) suchthatP c K.

If possible let M <gE such that M S M & K n M= (0)
Then P N M'=(0) ~ P c K, which contradicts (1).

~ M is also maximal such that. K N M = (0). ~ M is complement of K. Then M is

essentially closed by lemma 4.3.3.
This also proves the last statement.

Theorem 4.3.5: Let E be quasi-injective and let M be a essentially closed N-subgroup,
then for each N-subgroup K of E, N-homomorphism w : K — M can be extended to N-

homomorphism u : E - M.

Proof: Let F = {L /w is extended to a map of T into M for T <E containing L}

By Zorn’s lemma we can assume that K is such that w cannot be extended to a map of T

into M for any N-subgroup T of E which properly contains K.

Since E is quasi-injective, w is induced by amapu: E = E & let L complement of M in E.
Suppose w(E)Z M.

Since M is essentially closed. M is a complement of L.

Therefore, since u(E) + M D M, we see that
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(wE)y+M)nL#0.
LetO#£x=a+beuwE)+M)NL
acuE),beM
Ifa € Mthenx € M N L = 0, a contradiction.
Thereforea ¢ Manda=x-beL+M
Now T = {y € E/u(y) € L + M} is an N-subgroup of E containing K.
“xEK=>wk)eEM=uk)eEM Vkek.
~ T contains K.
Ify€Eissuchthatu(y)=atheny € T, buty & K since a € M.
[“yET=2u(y)=a€eL &y€eK=w(y) EM=u(y) EM Vy €K, contradiction to a¢ M]
Let m denote the projection of L + M on M. Then mu is a map of T'in M and
muy)=uwy)=w(y) VweEK [vyEK=>w(y) EM =uiy)eEM VyeK ]
Thus mru is a proper extension of w, a contradiction.
~u(E) €M, so u is the desired extension.

Cor 4.3.6: Let E be quasi-injective N-group then

(1) If M is any essentially closed N-subgroup of E, then M is direct summand of E and
M is quasi-injective. Also M has a complement in E.
(2) If P is any N-subgroup of E, then there exists a quasi-injective essential extension

of P contained in E.
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(3) Each minimal quasi-injective extension of an N-group K is an essential extension
of K.

Proof: (1) If e : E - M is the extension given by the theroem4.3.5 of the injection map

meM
méeéM

M - M then E=M @ Ker(e) where e(m) = {Ig
So that M is direct summand of E. -~ M is quasi-injective by theorem 4.1.11.
Moreover Ker(e) is complement of M. Since M N Ker(e) =(0) ... ... ... (1)

M essentially closed = M complement of some N-subgroup K.

= K is complement of M.

ie. MAK =(0)ecreenn. )

(1)&(2) = Ker(e) cK
Let(O#)xéK:‘»xEM

= e(x) = 0 [by definition of e]

SXE Ker(e).

~ K c Ker(e)

~ Ker(e) = K = Ker(e) complement of M.
(2) LetF={I/PCLP<.1}

PeEF. ~F#¢
Let { C;/C,€F} beachaininF.

M=uC;, PEC Vi
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=>Pc Ul P<L.C Vi
=P <, UG [ PNA#0 Vi, Ai<C. Since PN (Ui A)= UiPNn A)=0.
UA;<SUG]
If possible M=uC; <, K
P <, M <. K =P <K, contradicts maximality of M.

So by Zorn’s lemma P is contained in essentially closed N-subgroup M which is essential

extension of P and M is quasi-injective by (1).

(3) Let A be any minimal quasi-injective extension of an N-group K. Let K is contained

in quasi-injective essential extension B by (2)

i.e. K £.B, B essentially closed.

SoACB

As B is essential extension of K, A is also essential extension of K.

Thus every minimal quasi-injective extension of N-group K is an essential extension of K.

Definitions 4.3.7: An N-group E is said to have finite Goldie dimension if it does not

contain an infinite direct sum of non-zero ideals of E.

For an N-group E if there exists an integer n such that E has an independent
family of n non-zero ideals, but no independent families of more than n non-zero ideals,

then integer n is called the Goldie dimension of E.

The proof of the following proposition follows the same line of proof as N. V. Dung [22].
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Proposition 4.3.8: Let E be a finitely generated quasi-injective left N-group. Suppose E

contains an infinite direct sum of non zero independent family of ideals H = @;H,. Then .

the factor N- group E/H has infinite Goldie dimension.

Proof: Assume E/H has finite Goldie dimension k.

Since the index set A is infinite, we find infinite subsets A, Ay, ... ... ..

AiﬂAij fori#jand A=AU...... ... U Ay

For§j=@s Ha (0=1,2, ... ... ... ,ktDwegetH=S,©S5,® ... ...

[ Since H; <.S§; =@A]. Hy ,forA € Aj, as x; € Hy,.

x=0+0+......... +0+xi+0+.........+0+0t—:(—BA’H;».]

= S;’s are independent, as H;’s are independent by proposition1.3.6.

x € H=®,H) = X = }}je) X; unique.

= Zi1€7“1 Xi, T Zizelz R + Eik+1€?~k+1 Xikes
[~A=AU....... U Aws1, A1 Ay = 0 where ¥ 1 X, unique]
€ESIDS,D....... @ Si+1.

Then we have E(H) =E (S;) ® E(S2)® . . . ®E(Sk+1) by proposition1.4.13.

[~ Sj < E(S;) and { S;} independent = E( S;) independent by proposition1.3.6.]

E(Sj)# S, for each j.
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[ Note: Now for H = 1 @ S, E(H) = E(S1) @ E(S2) we show 2 = Zo1) @ 252
H S S
1 2

where H, S;, S, ideal of E.

E(H)
H

Proof: Define a map ¢ : — E(SSI) @ E(SSZ) by ¢(x + H) = (s; + Sy, s2 + S;) where x =
1 2
(s1, s2) € E(H) with s; € E(S)), s2 € E(S»).

¢ is well-defined:

Let x1+S,y1+8)#X2+S,y2+52) € 5%5:—) ® Eg:—) where (x1, y1) =h € E(H), (x2,
y2) =hy € E(H).

Toshowh; +H=hy+ H.

Now (x1 + 81, y1+82) # (%2 + 81, 2+ 52)
= either x; +8;# xo+ Sjory; + S, y, + S; or both.
= either x; —x2 ¢ Sjory; —y2 ¢ S; or both.

If possible lethj +H=h, +H
= h~-heH

> ELY)- X, y2)€H
=X -X,y1-Y2)€eH=5, 885,

= X;—X2 € S;ory; —y2 € Sy, a contradiction, soh; + H# hy + H.
So ¢ is well-defined.

dis1-1:
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Let(#0)x+H#x;+He %)-
ji.e.x;,%x € E(H)but ¢H and x; —x2 ¢ H.
Let x; = (11 » S21), Xz = (S12, S22) with s11, s12 € E(S1) and sz1, 522 € E(S2).
o( x1+ H) = (s11 + Sy, S+ S2), ¢(x2+ H) = (s12 + Sy, 822+ $)
If possible let ¢( x;+ H) = ¢( x2+ H)
=> (s11 + S, s21+ 82) = (512 + Sy, 5221 S2)
i.e. s;p+S;i=sp2+ S and s3;+ S = sp+ S,
=> 511 —S12 € S; and s31—522€ S
But since x; — X3 & H=>(s11,821)—(s12,52) € H
=> (511 —S12, Sa1—s2) € H=5, @ S,
=> either s;; —=s12¢ S Or s21-522 & S or both, which is a contradiction.
So ¢( x;+ H) = §( xo+ H) i.e. ¢ is 1-1.

¢ is onto:

/ E(S81) 4 E(S2)
Let X, ) € o=

=¥ € 3(51),y/€ E(Sz) ,x/;#y/
S: S,

= 3'5; € E(S1), s € E(S2) such that s = (s, 52) € E(S1) © E(S2) = E(H)

X =(s1+8),Y =(s2+S2) and ¢(s + H) = (s1 + S1, 52+ $2) = ., ).
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. ¢ is onto. So ¢ is isomorphism.]
Similarly as above note we get the isomorphism

(H) E(Sl) @ E(Sz) @ @ E(Sk+1)

H S Sz k+1

which is a ideal of 'f} .
The Goldie dimension of g is at least k+1, a contradiction.

Thus g- has infinite Goldie dimension.

Theorem 4.3.9: Let N be dgnr and E be a quasi- injective, finitely generated N-group. IfE

has A.C.C. on essential ideals, then E is weakly Noetherian.

So (E)

weakly Noetherian. So -—E cannot contain an infinite direct sum of ideals. i.e. S_E('E)' has

finite Goldie dimension. So by proposition 4.3.8, E cannot contain an infinite direct sum
SocE = @M. i.e. SocE is finite direct sum of simple ideals. Since every simple ideal is
weakly Noetherian, by corollary 4.1.8 SocE is weakly Noetherian. Now if we consider the

exact sequence

E
Soc(E) — 0, SocE and Soc (E)

0 — SocE — E — are weakly Noetherian, so by

proposition 4.1.7 E is also weakly Noetherian.
For near-ring N with identity and M unital N-group if for every right ideal U of N and
every N-homomorphism f: U — M, there exists an element m in M such that f{a) = ma for

all a in U implies M is injective then we get the following two results.
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Proposition 4.3.10: Let N be a near ring with unity and let E be a unital N-group.Then the
direct sum Q = N @ E is a quasi-injective N-group if and only if both N and E are
injective.

Proof: The sufficiency is trivial. [N, E injective = N @ E injective = N @ E = Q quasi-

injective(as injective = quasi-injective)]

Conversely if Q is quasi-injective, so are N and E since direct summands of quasi-injective
N-group are quasi-injective. As N is quasi-injective, for every right ideal U of N and every
N-homomorphism f : U — N, there exists an element m in N such that f(a) = ma for all a

in U. So N is injective.

Let f be any map of an ideal I of N into E. Writing the elements of Q as ordered pairs (n,
e), n €N, e € E the correspondence (x,0) — (0, f(x)) defined for all x € I is a map of an

N-subgroup of Q into Q and therefore has an extension f: Q = Q.

Set £(1,0) = (s,n)

If x € I then (0, f(x)) = f(x,0) = (1,0)x = (sx, nx) ie.f(x)=nx Vx €L
Thus E is injective.

Following is the corollary of theorem 4.2.6 with those same conditions.

Corollary 4.3.11: If J = 0, A is a regular near-ring. Moreover if regular near-ring A is
such that each finitely generated ideal of A is generated by idempotent, then A, is

injective.

Proof: A is a regular Near-ring .
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Let f: I - A be any map of a ideal I into A. By IE we mean that N-subgroup of E
generated by { Am /A €I, m € E} and it follows that if x € IE then there exists m;, my,
ms, ... ... ... ,MEE, A, Ay, A3, ... «ov oo, Ay €I such that such that x =YL, A; m;. We

consider a correspondence
X= 2?:1 7\1 m; = Z?::I f(xi)m;

Ifalsoy =Z}=1uj mj/ € IE, I €l, mj/ €E j=1,2,3,... ... .., t then the ideal generated -

bY A A2 A3, con cns e s An BI s H2 o M3 s cen vve vee , Un has the form ¢ A, wheree =¢’ € A

and then e); = A, el = .
f)=1e) A, f(uj) = f(e) M s i=123,........n,j=123,......... ,t
Consequently T f0)m, = T, f(e), m; = &), b m; = f(e)x,

Similarly, }=1 f(uj)mj/ = f(e)y, so that x —» Yi_, f(A.)m, is a single valued correspondence,

0 is a map of IE in E. By quasi-injectivity 0 is induced by an element of A, which is also

denoted by 0. Then (6A)(m) =6(Am) =f(A)(m) VAEL m€Esothatf(A)=04 )VAEL

So we conclude that A, is injective.

4.4. SUPERHONESTY IN QUASI-INJECTIVE N-GROUPS:

In chapter 2 we have studied many properties and characteristics of superhonest
near-ring groups. In this section we try to establish some characteristics of superhonest

quasi-injective near-ring groups.
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Theorem 4.4.1 : : If E is a quasi-injective N-group, Cl, T, (E) is super-honest in E implies

Cl, T, (E) = P, the smallest super-honest N-subgroup of E.

Proof: Since P contains Tn(E), so it contains T, (E). [Since every superhonest N-subgroup

contains Tn(E) by note 2.3.18(2) and Tn(E) contains T, (E)]

Then P is y-closed N-subgroup of E, therefore P = Cl, (P) > Cl, T, (E)) =T, T,(E). [Since

Cl, T,(E) = T, T, (E) by proposition 2.3.23]
Also T, T,(E) D P, since P is the smallest superhonest N-subgroup of E.
Hence Cl, T, (E) =P.

If sum of two N-subgroups is again an N-subgroup of an N-group then we get the following

four results:

Theorem 4.4.2 If M is a y-closed ideal of an quasi-injective N-group E and Tn(E) <M

then M is super-honest ideal of E .
Proof: Let a € E \ M with na € M for some n € N.

Since M is a ¢-closed ideal of E, by corollary 4.3.6(i), E =M @ M°, where M®is a

complement N-subgroup of M in E, since M is y-closed implies essentially closed.

¢

Then a=m + m'’ for some me M and m'e M®,
Now m'=-m+a impliesn(-m+a)=n(-m+a)—na+na =nm'e M N M°=0.

But 0 # m’ (for otherwise a=m € M) and m’ ¢ Tn(E) (Since M D Tn(E) and a € M), son

= (. Hence M is super-honest in E.
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Theorem 4.4.3: If E is a quasi-injective N-group and T, T, (E) is ideal of E

containing Ty(E) then T, T, (E) is super-honest in E.

Proof Since T, T, (E) is a y-closed ideal of E and T, T, (E) > Tn(E) , T, T,(E) is super-

honest in E by theorem 4.4.2.

Note 4.4.4: From corollary 2.3.21 we know that if P is the smallest super-honest N-

subgroup of an N-group E then f(P) < P for each N-endomorphism f of E.

Theorem 4.4.5: If E is a quasi-injective N-group with non trivial super-honest N-
subgroups P’ is a proper N-subgroup of E such that P’ > P then there exists an N-

endomorphism f of E such that f(P') ¢ P'.
Proof: Letae E—P',b e P'-P. Since P’ > P o T(E), a and b are both not in Tn(E).

Then we have an N-homomorphism ¢ from Nb to Na which is defined by ¢(nb) = na for

eachn € N.
Since, E is quasi-injective ¢ can be extended to an N-endomorphism f on E.

But then a € Na = f(Nb) < f(P’). Since a ¢ P’, we have f(P') < P.
For the following results we assume the ideal character of y-closure of the N-subgroup

generated by Ty(E).

Theorem 4.4.6: If E is an quasi-injective N-group, then the smallest super-honest N-

subgroup P = Cl, (D), where Cl, (D) is the x-closure of the N-subgroup D generated by

Tn(E).
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Proof: Since every super-honest N-subgroup of E contains Tn(E)(hence contains D) and is

a x-closed N-subgroup of E. [ by 2.3.13 and 2.3.11]
We have P = Cl, (P) 2 CL, (D).

On the otherhand since T,(E) € Tn(E) € D ¢ Cl, (D), by lemma 2.3.10, CL (D) is an

essential N-subgroup of Cl, Cl, (D) and D is an essential N-subgroup of Cl, (D).

Therefore D is an essential N-subgroup of Cl, Cl, (D).
Then Cl, CL,(D) c Cl, (D) [by proposition 2.3.23].
So Cl, CL, (D)=Cl, (D) is x-closed in E.

Since Cl, (D) 2 Tn(E) by proposition 4.4.2, Cl, (D) is super-honest ideal in E.

Hence CL, (D) 2 P.
- CL, (D)=P.

Theorem 4.4.7 : If E is a semi-simple quasi-injective N-group then the smallest super-
honest N-subgroup P = D where D is the N-subgroup of E generated by Tn(E) and Cl, (D)

is an ideal of E.
Proof: Since E is a semi-simple, every ideal of E is a direct summand of E.
Again, E is quasi-injective, so P = Cl, (D) by theorem 4.4.6.

But every N-subgroup of an semi-simple N-group is semi-simple. Thus D is direct

summand of Cl, (D) and is an essential N-subgroup of Cl, (D). Hence D = Cl, (D) =P.
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4.5 SOME RELATIONS OF QUASI-INJECTIVITY WITH RELATIVE INJECTIVITY:

In this section we attempt to find some relations between weak singular quasi-

injective N-groups and relative injective N-groups.

Definition4.5.1: A near-ring N is called QI-near-ring if every quasi-injective N-group is
injective.

Theorem 4.5.2: For a dgnr S’I-near-ring N, if every injective right N/K-group is injective

as an N-group for ideal K of N we get the following conditions equivalent:

i.  Every weak singular quasi- injective N-group is injective.
ii.  Z(N)=0 and direct sum of weak singular quasi-injective N-groups is injective.
Proof: i.=>ii. Since N is S*[-near-ring, Z(N) = 0 by lemma 3.4.21.

From proposition 3.4.25, direct sum of weak singular injective N-groups is injective.
From given condition we get direct sum of weak singular quasi-injective N-groups is
injective.
ii.=i. Let A be a weak singular quasi-injective N-group. E(A) is weak singular as
proposition 3.4.17. By hypothesis A @ E(A) is injective. So A is injective.

Theorem 4.5.3. For a near-ring N, N/S oc(N) is a QI-near-ring implies every singular

quasi-injective N-group is injective.
Proof: If E is singular quasi-injective N —group then Soc(N). E = 0 and so E is quasi-

injective N/S oc(N) Broup- Whence E is injective as an N/S oc(N) Broup- So E is injective

as an N-group.
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Theorem 4.5.4: If every singular quasi-injective N-group is injective if and only if N is

Ql-ring then N/S oc(N) is a Ql-near-ring.

Proof: If E is singular quasi-injective N/S oc(N)Broups then E is singular quasi-injective N
—group. Thus E is injective as an N-group hence injective as an N/S oc(N) Broup: Whence
N/S oc(N) is a near-ring all of whose singular quasi-injective N/S oc(IN) “groups are

injective. So, N/ Soc(N) is a QI-near-ring.



