Chapter 3

RELATIVE INJECTIVITY

3.1 PRELIMINARIES

,

3.2 E-INJECTIVITY AND INJECTIVITY

3.3 ON DIRECT SUM OF N-GROUPS WITH INJECTIVITY AND E-INJECTIVITY

3.4 E-INJECTIVE AND INJECTIVE N-GROUPS WITH CHAIN CONDITIONS

.

3. RELATIVE INJECTIVITY

In this chapter we discuss relative injectivity and injectivity of N-groups. This chapter has four sections.

3.1 PRELIMINARIES:

This section deals with some basic definitions and results which are used in the later sections.

Definition 3.1.1: Let E be an N-group. Then the singular subset of E is defined as the set

 $Z(E) = \{ x \in E / Ix = 0 \text{ for some essential N-subgroup I of N} \}.$

An N-group E is called singular N-group if Z(E) = E.

An N-group E is called non-singular N-group if Z(E) = 0.

Definition 3.1.2: If E is an N-group, the set $Z_w(E) = \{ x \in E / | Ix = 0 \text{ for some essential ideal I of N} \}$ is weak singular subset of E.

An N-group E is called weak singular if $Z_w(E) = E$.

An N-group E is called weak non-singular if $Z_w(E) = 0$.

Example 3.1.3: $N = Z_8$ is a near-ring with two operations '+' as addition modulo 8 and '.' defined by following table:

•	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	0	0	2	0	0 4 0	4	2
2	0	0	0	4	0	0	0	4
3	0	0	0	6	0	4	4	6
4	0	0	0	0	0	4 0 4	0	0
5	0	0	0	2	0	4	4	2
6	0	0	0	4	0	0	0	4
7	0	0	0	6	0	0 4	4	6

Here I = {0, 4} is an essential N-subgroup of N. Here $\forall x \in N$, Ix = 0. So Z(N) = N, so N is singular.

But I = $\{0, 4\}$ is also an essential ideal of N. Hence $Z_w(N) = N$ and so N is also weak singular.

Example 2.1.13 is an example of non-singular as well as weak non-singular N-group.

Definition 3.1.4: An N-monomorphism $f : A \rightarrow B$ is said to be an essential N-monomorphism if $fA \leq_e B$.

Proposition 3.1.5: An N-group C is singular if there exists a short exact sequence

 $0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0$ such that f is an essential N-monomorphism.

69

Proof: Let $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ be a short exact sequence such that f is an essential Nmonomorphism. For any $b \in B$, we have a map $k : N \to B$ defined by k(n) = nb. By proposition 1.3.5, $k^{-1}(fA) \leq_e N$.

 \Rightarrow the N-subgroup I = { $n \in N / nb \in fA$ } is an essential N-subgroup of N.

Now $Ib \leq fA = Kerg$.

Hence $g(Ib) = 0 \implies I(gb) = 0$ and so $gb \in Z(C)$.

Since g is an N-epimorphism, we get $Z(C) = C \implies C$ is singular.

Corollary 3.1.6: If A is an essential ideal of B, then B/A is singular.

Proof: We consider the short exact sequence $0 \rightarrow A \xrightarrow{i} B \xrightarrow{g} B/A \rightarrow 0$.

As $A \leq_e B$, from above proposition B/A is singular.

Proposition 3.1.7: If B is Non-singular and B/A is singular then $A \leq _{we} B$.

Proof: If B/A is singular and x is non-zero element of B, then $I\bar{x} = \bar{0}$ for some essential N-subgroup I of N \Rightarrow Ix \leq A. As B is non-singular, we have Ix $\neq 0$ and thus Nx \cap A $\neq 0$.

Therefore $A \leq we B$.

Proposition 3.1.8: If N is a dgnr and {Ne} $_{e \in E}$ is an independent family of normal N-subgroups of N-group E then E is a homomorphic image of $\bigoplus_{e \in E}$ Ne.

Proof: Let $f_e: Ne \rightarrow E$ be defined by $f_e(ne) = ne$.

Then f_e is N-homomorphism.

Let $f_{e_i} : Ne_i \rightarrow E$ be defined by $f_{e_i}(n_ie_i) = n_ie_i$ and $f_{e_j} : Ne_j \rightarrow E$ be defined by $f_{e_j}(n_je_j) = n_je_j$ Let $f_{e_i} + f_{e_j} : Ne_i \oplus Ne_j \rightarrow E$ be defined by $(f_{e_i} + f_{e_j})(n_ie_i + n_je_j) = (f_{e_i}(n_ie_i) + f_{e_j}(n_je_j).$

Obviously it is well-defined.

•

Let
$$(n_i'e_i + n_j'e_j), (n_i''e_i + n_j''e_j) \in Ne_i \oplus Ne_j$$
 and $(f_{e_i} + f_{e_j})((n_i'e_i + n_j'e_j) + (n_i''e_i + n_j''e_j))$
= $(f_{e_i} + f_{e_j})((n_i'e_i + n_i''e_i) + (n_j'e_j + n_j''e_j))$ [since Ne's are normal N-subgroups]
= $(f_{e_i} + f_{e_j})((n_i' + n_i'')e_i) + ((n_j' + n_j'')e_j))$
= $(n_i' + n_i'')e_i + (n_j' + n_j'')e_j$
= $((n_i'e_i + n_i''e_i) + (n_j'e_j + n_j''e_j))$
= $((n_i'e_i + n_j'e_j) + (n_i''e_i + n_j''e_j))$
= $f_{e_i}(n_i'e_i) + f_{e_j}(n_j'e_j) + f_{e_i}(n_i''e_i) + f_{e_j}(n_j''e_j))$
= $(f_{e_i} + f_{e_j})(n_i'e_i + n_j'e_j) + (f_{e_i} + f_{e_j})(n_i''e_i + n_j''e_j)$
Next for $n \in N$, $(f_{e_i} + f_{e_j})(n(n_i'e_i + n_i''e_i)) = (f_{e_i} + f_{e_j})(\sum_{i=1}^n S_i (n_i'e_i + n_i''e_i))$ [since N dgnr]

۱

$$= (f_{e_{i}} + f_{e_{j}})(s_{1}(n_{i}'e_{i} + n_{i}''e_{i}) + s_{2}(n_{i}'e_{i} + n_{i}''e_{i}) + \dots + s_{n}(n_{i}'e_{i} + n_{i}''e_{i}))$$

$$= (f_{e_{i}} + f_{e_{j}})((s_{1}n_{i}' + s_{2}n_{i}' + \dots + s_{n}n_{i}')e_{i} + (s_{1}n_{i}'' + s_{2}n_{i}'' + \dots + s_{n}n_{i}'')e_{j})$$

$$= (f_{e_{i}} + f_{e_{j}})((\sum_{i=1}^{n} s_{i})n_{i}')e_{i} + (\sum_{i=1}^{n} s_{i})n_{i}'')e_{j}$$

$$= (f_{e_{i}} + f_{e_{j}})((nn_{i}')e_{i} + (nn_{i}'')e_{j})$$

$$= (nn_{i}')e_{i} + (nn_{i}'')e_{j}$$

4

$$= (\sum_{i=1}^{n} s_{i}) n_{i}'e_{i} + (\sum_{i=1}^{n} s_{i}) n_{i}''e_{j}$$

$$= ((s_{1}n_{i}'e_{i} + s_{2}n_{i}'e_{i} + \ldots + s_{n}n_{i}'e_{i}) + (s_{1}n_{i}''e_{j} + s_{2}n_{i}''e_{j} + \ldots + s_{n}n_{i}''e_{j}))$$

$$= (s_{1}(n_{i}'e_{i} + n_{i}''e_{i}) + s_{2}(n_{i}'e_{i} + n_{i}''e_{i}) + \ldots + s_{n}(n_{i}'e_{i} + n_{i}''e_{i}))$$

$$= (\sum_{i=1}^{n} s_{i} (n_{i}'e_{i} + n_{i}''e_{i}))$$

$$= n(f_{e_{i}} + f_{e_{i}}) (n_{i}'e_{i} + n_{i}''e_{i})$$

Thus $(f_{e_i} + f_{e_j})$ is an N-homomorphism.

Similarly if we define $f = \Sigma_{e \in E} f_e : \bigoplus_{e \in E} Ne \to E$ by $(\Sigma_{e \in E} f_e) (\Sigma_{e \in E} ne) = (\Sigma_{e \in E} f_e(ne))$, n $\in N$, it is an N-homomorphism.

Obviously it is an N-monomorphism.

Again for any $e_k \in E$ we get $e_k \in Ne_k \in \bigoplus_{e \in E} Ne$. So f is onto.

Hence E is a homomorphic image of $\bigoplus_{e \in E} Ne$.

Theorem 3.1.9: For a short exact sequence $0 \to A \xrightarrow{\alpha} B \xrightarrow{\beta} C \to 0$ if A and C are finitely generated then B is also finitely generated.

Proof: As $\beta : B \to C$ is an epimorphism, $C \cong \frac{B}{Ker\beta} \implies C \cong \frac{B}{\alpha(A)}$.

For identity map α , $C \cong \frac{B}{A}$.

So if an N-group B has finitely generated N-subgroup A and factor N-group $\frac{B}{A}$ then B is also finitely generated.

Definition 3.1.10: For an N-group E an element x is called a nilpotent element if $x^k = 0$ for some $k \in I^+$.

3.2 E-injectivity and injectivity:

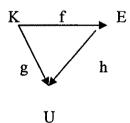
In this section we define relative injective N-groups, and some special relative injective N-groups and investigate various characteristics of these N-groups.

In the third section of the chapter we study direct sums of relative injective N-groups and N-subgroups, direct product of relative injective N-groups. Using the notion of dominance of an element of an N-group by another N-group direct sums of relative injective N-groups are established.

In the last section we are trying to relate direct sums of relative injective N-groups and chain conditions, relative injectivity of simple, semi-simple, strictly semi-simple, singular N-groups and chain conditions.

Throughout the remaining section of this chapter we consider all N-groups unitary N-groups unless otherwise specified.

Definition 3.2.1: Let E and U be N-groups. U is called E- injective or U is injective relative to E if for each N-monomorphism $f: K \to E$, every N –homomorphism from K into U can be extended to an N- homomorphism from E into U. i.e. The diagram



commutes. i.e. g = hf.

An N-group A is injective if it is E-injectve for every N-group E of N. So if an N-group A is injective it is E-injectve for any N-group E.

Proposition 3.2.2: Let N be a dgnr, E be an N-group and F be a commutative N-group. Then the set $\text{Hom}_N(E, F) = \{ f/f : E \rightarrow F \text{ is an N-homomorphism} \}$ is an abelian group where addition is defined as : for f, $g \in \text{Hom}_N(E, F)$, (f + g)(e) = f(e) + g(e).

Proof: As F is an abelian N-group, for f, $g \in Hom_N(E, F)$ and $e \in E$,

$$(f + g)(e) = f(e) + g(e)$$

= g(e) + f(e)

= (g + f)(e), so f + g = g + f.

We are to show f + g is an N-homomorphism.

For $e_1, e_2 \in E$, $(f+g)(e_1+e_2) = f(e_1+e_2) + g(e_1+e_2)$ [By given condition] $= f(e_1) + f(e_2) + g(e_1) + g(e_2) \quad [\because f,g \text{ are N-homomorphism}]$ $= f(e_1) + g(e_1) + f(e_2) + g(e_2) \quad [\because F \text{ is abelian}]$ $= (f+g)(e_1) + (f+g)(e_2) \quad [By given condition]$ Next for $e \in E$, $n \in N$

$$(f + g)(ne) = f(ne) + g(ne)$$
 [By given condition]
= $nf(e) + ng(e)$ [\because f, g are N-homomorphisms]
= $(\sum_{i=1}^{n} s_i)f(e) + (\sum_{i=1}^{n} s_i)g(e)$ [\because N is dgnr]

$$= s_1 f(e) + s_2 f(e) + \ldots + s_n f(e) + s_1 g(e) + s_2 g(e) + \ldots + s_n g(e)$$

$$= s_1 f(e) + s_1 g(e) + s_2 f(e) + s_2 g(e) + \ldots + s_n f(e) + s_n g(e) \quad [\because s_i f(e), s_i g(e) \in F]$$

$$= s_1 (f(e) + g(e)) + s_2 (f(e) + g(e)) + \ldots + s_n (f(e) + g(e))$$

$$= s_1 ((f + g)(e)) + s_2 ((f + g)(e)) + \ldots + s_n ((f + g)(e))$$

$$= (s_1 + s_2 + \ldots + s_n) ((f + g)(e))$$

$$= n((f + g)(e))$$

Thus f + g is an N-homomorphism.

Proposition 3.2.3: Let B, M be two N-groups and C an ideal of B. For N-homomorphism

 $f: B \to M \exists$ unique homomorphism $\overline{f}: \frac{B}{C} \to M$ such that $\overline{f}(\overline{b}) = f(b), \forall C \subseteq Kerf$.

.

Proof: Let $\overline{b_1} = \overline{b_2}$ $\Rightarrow \overline{b_1} - \overline{b_2} = \overline{0}$ $\Rightarrow b_1 - b_2 + C = C$ $\Rightarrow b_1 - b_2 \in C \subseteq \text{Kerf}$ $\Rightarrow f(b_1 - b_2) = 0$ $\Rightarrow f(b_1) - f(b_2) = 0$ $\Rightarrow \overline{f}(\overline{b_1}) = \overline{f}(\overline{b_2})$ So \overline{f} is well-defined. Next $\overline{f}(\overline{b_1} + \overline{b_2})$ $= \overline{f}(\overline{b_1 + b_2})$ $= f(b_1 + b_2)$ $= f(b_1) + f(b_2)$ $= \overline{f}(\overline{b_1}) + \overline{f}(\overline{b_2})$ And $\overline{f}(n \overline{b})$ $= \overline{f}(n(b + C))$ $= \overline{f}(nb + C)$ $= \overline{f}(nb)$ = f(nb) = nf(b)

So \overline{f} is an N-homomorphism and by definition obviously it is unique.

Thus we get if f is an epimorphism, then \overline{f} defined as above is also an epimorphism.

Definition 3.2.4: Let U be an commutative N-group and $f: L \rightarrow M$ be an N-

homomorphism. We can define a mapping

 $f^* = Hom_N(f, U) : Hom_N(M, U) \rightarrow Hom_N(L, U)$

by Hom_N(f, U): $\gamma \rightarrow \gamma f$ i.e. $f^* \gamma = \gamma f$ then Hom_N(f, U) is an N-homomorphism...

Proposition 3.2.5: If U is a commutative N-group, then for every exact sequence

$$0 \to K \xrightarrow{f} E \xrightarrow{g} L \to 0$$

the sequence $0 \to \operatorname{Hom}_N(L, U) \xrightarrow{g^*} \operatorname{Hom}_N(E, U) \xrightarrow{f^*} \operatorname{Hom}_N(K, U)$ is exact.

Proof: If $\gamma \in Hom_N(L, U)$ and $g^*(\gamma) = 0$

 $\Rightarrow \gamma g = 0$ $\Rightarrow \gamma = 0 \quad [:: g \text{ is N-epimorphism}]$ $\Rightarrow g^* \text{ is N-monomorphism.}$

Next let $\gamma \in \text{Hom}_N(L,U)$. Then $f^* g^*(\gamma) = f^*(\gamma g) = (\gamma g)f = \gamma(gf) = \gamma 0 = 0^* = 0 = 0\gamma$

So we get $f^* g^* = 0 \implies \text{im } g^* \subseteq \text{Ker } f^*$.

Next let $\beta \in \text{Ker } f^*$, then $\beta f = f^* \beta = 0$

 $\Rightarrow \beta(\text{imf}) = 0 \Rightarrow \beta(\text{Kerg}) = 0$

 \Rightarrow Kerg \subseteq Ker β .

Now $\beta : E \to U$ is an N-homomorphism such that Kerg \subseteq Ker β .

 $\Rightarrow \exists$ a unique N-homomorphism $\overline{\beta} : \frac{E}{Kerg} \to U$ such that $\overline{\beta}(\overline{b}) = \beta(b)$.

Also g: E \rightarrow L is an N-epimorphism, so \exists an N-isomorphism $\phi : \frac{E}{Kerg} \rightarrow L$ such that

 $\phi(\overline{b}) = g(b).$

We consider the following sequence of N-homomorphisms

$$L \xrightarrow{\phi^{-1}} \frac{E}{Kerg} \xrightarrow{\overline{\beta}} U$$
, which gives $\overline{\beta} \phi^{-1} \in Hom_N(L, U)$.

Now $g^*(\overline{\beta} \phi^{-1}) = (\overline{\beta} \phi^{-1})g = \beta$ $\Rightarrow \beta \in \text{ im } g^*$. [since $g^*(\overline{\beta} \phi^{-1})(b) = ((\overline{\beta} \phi^{-1})g)(b) = \overline{\beta}(\overline{b}) = \beta(b)$]. So $\text{ img}^* = \text{Ker } f^*$. **Proposition 3.2.6:** A commutative N-group U is E-injective if and only if $Hom_N(-, U)$ is exact.

Proof: We assume U is E-injective.

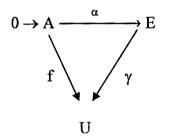
We consider the exact sequence $0 \rightarrow A \xrightarrow{\alpha} E \xrightarrow{\beta} C \rightarrow 0$.

Now exactness of $0 \to A \xrightarrow{\alpha} E \xrightarrow{\beta} C \to 0$ implies

 $0 \to \operatorname{Hom}_{N}(C, U) \xrightarrow{\beta^{\star}} \operatorname{Hom}_{N}(E, U) \xrightarrow{\alpha^{\star}} \operatorname{Hom}_{N}(A, U) \text{ is exact.}$

So it is enough to show α^* is epic.

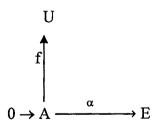
Let $f \in Hom_N(A, U)$. We consider the diagram



Since U is injective, $\exists \gamma \in \text{Hom}_N(E, U)$ such that $\gamma \alpha = f$

$$\Rightarrow \alpha^* \gamma = f$$
$$\Rightarrow \alpha^* \text{ is onto.}$$

Conversely, let HomN(-, U) be exact. We consider the diagram with exact row



 $0 \rightarrow A \xrightarrow{\alpha} E \xrightarrow{\beta} \frac{E}{im\alpha} \rightarrow 0$ is exact.

 $\Rightarrow 0 \rightarrow \operatorname{Hom}_{N}(\frac{E}{\operatorname{im}\alpha}, U) \xrightarrow{\beta^{*}} \operatorname{Hom}_{N}(E, U) \xrightarrow{\alpha^{*}} \operatorname{Hom}_{N}(A, U) \rightarrow 0 \text{ is exact.}$

Since α^* is an epimorphism, for $f \in \text{Hom}_N(A, U)$ such that $\alpha^* \gamma = f$

$$\Rightarrow \gamma \alpha = f$$

Thus $\exists \gamma : E \rightarrow U$ such that $\gamma \alpha = f \Rightarrow U$ is E-injective.

Definitions 3.2.7: An N-group E is a WI-N-group if N-group W is E-injective.

Definition 3.2.8: An N-group E is a W_{CI} -N-group if a commutative N-group W is E-injective.

Definition 3.2.9: An N-group E is called a s-simple or a strict simple N-group if it has no proper normal N-subgroups.

Proposition 1.3.12 holds for normal N-subgroups also. Thus we get the following proposition:

Proposition 3.2.10: The following are equivalent

- (a) Every normal N-subgroup of E is a direct summand.
- (b) E is a sum of simple normal N-subgroups.
- (c) E is a direct sum of simple normal N-subgroups.

Definitions 3.2.11: We define s-Soc E or strict socle of E as direct sum of simple normal N-subgroups.

An N-group E is called a strictly semisimple N-group if s-Soc(E) = E. In other words E is strictly semisimple if one of the conditions of proposition 3.2.10 holds.

We observe that every semisimple N-group is strictly semisimple but the converse is not true. If N is a dgnr then every strictly semisimple N-group is semisimple.

The following is an example of strictly semisimple N-group which is not semisimple.

Example 3.2.12: We consider the near-ring $N = \{0, a, b, c, x, y\}$ under the addition and multiplication defined as the following table

+	0	a	b	С	x	у
0	0	_	Ŀ			
0	0	а	b	с	х	У
a	а	0	У	x	С	b
b	b	x	0	У	а	с
c	с	У	x	0	b	а
x	x	b	с	a	У	0
У	У	с	а	b	0	x
	ļ					
	1					
•	0	a	b	с	x	У
	0	a 0	b 0	с 0	x 0	у ————————————————————————————————————
• 0 a						
	0	0	0	0	0	0
a	0	0 a	0 b	0 c	0	0
a b	0 0 0	0 a a	0 b b	0 c c	0 0 0	0 0 0
a b c	0 0 0 0	0 a a a	0 b b b	0 c c c	0 0 0 0	0 0 0 0

.

Here $\{0, a\}, \{0, b\}, \{0, c\}, \{0, x, y\}$ are simple left normal N-subgroups of N.

And $N = \{ 0, a \} + \{ 0, b \} + \{ 0, c \} + \{ 0, x, y \}$. So N is strictly semisimple.

But N is not semisimple.

Definitions 3.2.13: An N-group E is called SI N-group if every singular N-group is E-injective.

An N-group E is called S_wI N-group if every weak singular N-group is E-injective.

An N-group E is called V N-group if every simple N-group is E-injective.

An N-group E is called V_c N-group if every simple commutative N-group is E-injective.

An N-group E is called GV N-group if every simple singular N-group is E-injective.

An N-group E is called S^2 I N-group if every strictly semi-simple N-group is E-injective.

An N-group E is called S^3 I N-group if every strictly semi-simple singular N-group is Einjective.

An N-group E is called S^2S_wI N-group if every strictly semi-simple weak singular N-group is E-injective.

Definition 3.2.14: A near-ring N is called V near-ring if $_NN$ is a V N-group and GV near-ring if $_NN$ is a GV N-group.

A near-ring N is called V_c near-ring if _NN is a V_c N-group.

Proposition 3.2.15: N-subgroups of a WI N-group are again WI N-groups.

Proof: Let E be a WI N-group.

 \Rightarrow W is E-injective.

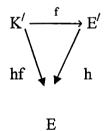
And let E' be any N-subgroup of E.

We show E' is also a WI N-group.

That is we are to show W is also E'-injective.

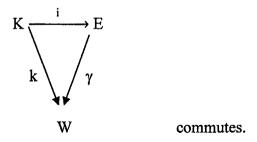
Let $h: E' \to E$ be an N-monomorphism and K' be an N-subgroup of E' and $f: K' \to E'$ be any N-monomorphism.

Then hf is also an N-monomorphism, hf : $K' \rightarrow E$.



Now W is E-injective, so for any N-subgroup K of E, the N-monomorphism $i: K \to E$ and any N-homomorphism $k: K \to W$, \exists an N- homomorphism $\gamma: E \to W$ s.t. $k = \gamma i$.

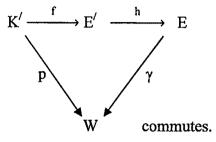
i.e. the following diagram



Since W is E-injective, so for N- monomorphism $hf : K' \to E$ and $p : K' \to W$ we get

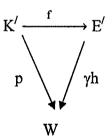
 $\gamma: E \rightarrow W$ such that $\gamma(hf) = p$.

That is the diagram



Now $f: K' \to E'$ is an N-monomorphism and for any N- homomorphism $p: K' \to W$,

we get $\gamma h: E' \to W$ such that the diagram



commutes. That is $p = (\gamma h)f$.

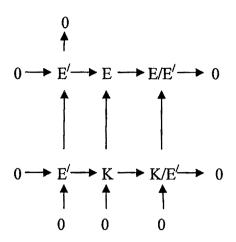
Therefore W is E'- injective.

Proposition 3.2.16: Homomorphic images of a W_CI N-groups are again W_CI N-groups.

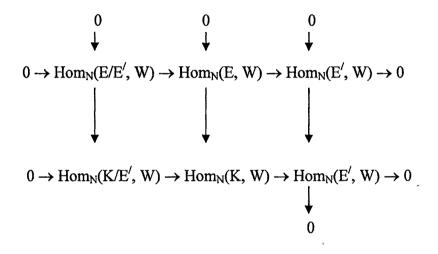
Proof: Given $0 \to E' \xrightarrow{h} E \xrightarrow{k} E'' \to 0$ is exact and commutative N-group W is E-injective.

We show W is E''-injective.

Let $E' \le K \le E$ and that E'' = E/E'. Now we consider the canonical diagram



Now applying $Hom_N(-, W)$ we get the diagram



Since $\operatorname{Hom}_{N}(E/E', W) \xrightarrow{\phi} \operatorname{Hom}_{N}(K/E', W)$ is epic, for all $\gamma \in \operatorname{Hom}_{N}(K/E', W) \exists \alpha \in \operatorname{Hom}_{N}(E/E', W)$ such that $\phi(\alpha) = \gamma$

 $\Rightarrow \alpha f = \gamma$, where $f: K/E' \rightarrow E/E'$ is an N-monomorphism and $\phi = Hom_N(f, W)$.

Thus W is E/E'-injective.

 $\Rightarrow E''$ is W_cI N-group of E.

3.3. On direct sum of N-groups with Injectivity and E-injectivity:

In this section we study direct sums of relative injective N-groups and N-subgroups, direct product of relative injective N-groups. Using the notion of dominance of an element of an N-group by another N-group direct sums of relative injective N-groups several properties are established.

Proposition 3.3.1: Let N be a dgnr. If E_{α} is a WI N-group for all $\alpha \in A$ then $E = \bigoplus_{\alpha \in A} E_{\alpha}$ is a WI N-group, where E is commutative.

Proof: Let $E = \bigoplus_{\alpha \in A} E_{\alpha}$ and E_{α} is WI N-group

 \Rightarrow W is E_{α}-injective for all $\alpha \in A$.

We consider an N-subgroup K of E and the N-homomorphism $h: K \rightarrow W$.

Let $\Omega = \{ f : L \rightarrow W / K \le L \le E \text{ and } (f \mid K) = h \}.$

Let $g: A \rightarrow W$, $h: B \rightarrow W \in \Omega$. $g \le h$ if $A \subseteq B \subseteq E$.

Then Ω is ordered set by set inclusion. Ω is clearly inductive.

Let $\overline{h}: M \to W$ be a maximal element in Ω .

To get the proof it is sufficient to show that each E_{α} is contained in M.

Let $K_{\alpha} = E_{\alpha} \cap M$.

Then $(\bar{h} \mid K_{\alpha})$: $K_{\alpha} \to W$, so since $K_{\alpha} \leq E_{\alpha}$ and W is E_{α} - injective, there is an N-homomorphism

 $\overline{h_{\alpha}} : E_{\alpha} \to W \text{ with } (\overline{h_{\alpha}} \mid K_{\alpha}) = (\overline{h} \mid K_{\alpha}).$

If $e_{\alpha} \in E_{\alpha}$ and $m \in M$ such that $e_{\alpha} + m = 0$, then $e_{\alpha} = -m \in K_{\alpha}$ and $\overline{h_{\alpha}}(e_{\alpha}) + \overline{h}(m)$

 $\bar{h} = \bar{h} (-m) + \bar{h} (m) = 0.$

Thus $f: e_{\alpha} + m \rightarrow \overline{h_{\alpha}} (e_{\alpha}) + \overline{h} (m)$ is a well defined N-homomorphism $f: E_{\alpha} + M \rightarrow W$. But $(f \mid M) = \overline{h}$, so by maximality of \overline{h} , $E_{\alpha} \subseteq M$.

Proposition 3.3.2: W is E- injective \Rightarrow W is Ne –injective for all $e \in E$.

Proof: Since Ne is an N-subgroup of E. As W is E- injective, proposition 3.2.15 impliesW is Ne-injective.

Proposition 3.3.3: Let N be a dgnr. If W is a commutative N-group and {Ne} $_{e \in E}$ is an independent family of normal N-subgroups of N-group E, W is Ne-injective for all $e \in E$, then W is E- injective

Proof: W is Ne–injective for all $e \in E$.

So by proposition 3.3.1, W is $\oplus_{e \in E}$ Ne –injective.

Since E is a homomorphic image of $\bigoplus_{e \in E}$ Ne by proposition 3.1.8 and since homomorphic image of a W_{CI} N-group is W_{CI} N-group by proposition 3.2.16.

So W is E-injective.

Proposition 3.3.4: If a finite direct sum of injective normal N-subgroups (ideals) of E, i.e.

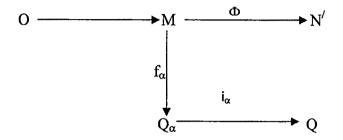
 $Q = \bigoplus Q_{\alpha}$, where Q_{α} is normal N-subgroup (or ideal) of E is injective, then each Q_{α} is injective.

Proof: Let $Q = \bigoplus Q_{\alpha}$ be injective N- subgroup and consider the N-monomorphism

 $f_{\alpha}: M \rightarrow Q_{\alpha}$, where M is some N- subgroup of E.

: Q is direct sum, for any $\alpha = 1, 2, 3, ..., n$ there is the inclusion map $i_{\alpha} : Q_{\alpha} \to Q$ and the projection on $\Pi_{\alpha} : Q \to Q_{\alpha}$ such that $\Pi_{\alpha} i_{\alpha} = 1_{Q_{\alpha}}$.

Consider a diagram



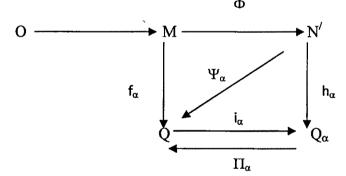
with top row exact.

Since Q is injective \exists an N- homomorphism $h_{\alpha} : N' \rightarrow Q$, such that $h_{\alpha} \Phi = i_{\alpha} f_{\alpha}$.

Now define $\Psi: N' \to Q_{\alpha}$ by $\Psi_{\alpha} = \Pi_{\alpha} h_{\alpha}$.

Since $\Pi_{\alpha} i_{\alpha} = 1_{Q_{\alpha}}$, it follows that $\Psi_{\alpha} \Phi = \Pi_{\alpha} h_{\alpha} \Phi = \Pi_{\alpha} i_{\alpha} f_{\alpha} = f_{\alpha}$.

So, the diagram

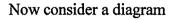


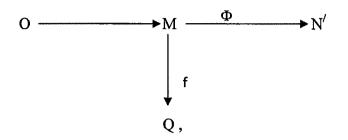
commutative.

Thus Q_{α} is injective.

Proposition 3.3.5: Let N be a dgnr. A finite direct sum of injective normal N-subgroups (ideals) of E, i.e. $Q = \bigoplus Q_{\alpha}$, where Q_{α} is normal N-subgroup (or ideal) of E, is injective if each Q_{α} is injective .

Proof: Let $Q = \bigoplus Q_{\alpha}$ with each Q_{α} injective N- group.





where M, N' are N subgroups of E with the top row exact.

For any $\alpha = 1, 2, 3, ..., n$, there is the canonical inclusion $i_{\alpha} : Q_{\alpha} \to Q$ and the projection $\Pi_{\alpha} : Q \to Q_{\alpha}$, so there are the N-homomorphisms $\Pi_{\alpha} f : M \to Q_{\alpha}$.

Since Q_{α} is injective there exists a N-homomophism $h_{\alpha} : N' \to Q_{\alpha}$ such that $h_{\alpha} \Phi = \Pi_{\alpha} f$.

Now define a map $h: N' \to Q$ by the formula

$$\begin{split} h(x) &= \Sigma \ \{h_{\alpha} \ (x)\}^n \\ \alpha &= 1 \\ &= (h_1(x) + \ldots + h_n(x)) \quad \forall \ x \in N'. \end{split}$$

Then h is N-homomophism.

Since
$$h(x_1 + x_2) = (h_1(x_1 + x_2) + \dots + h_n(x_1 + x_2))$$

$$= (h_1(x_1) + h_1(x_2) + \dots + h_n(x_1) + h_n(x_2))$$

$$= h_1(x_1) + \dots + h_n(x_1) + h_1(x_2) + \dots + h_n(x_2) \text{ [since Q is normal N-subgroup]}$$

$$= h(x_1) + h(x_2)$$

$$h(n'x) = (h_1(n'x) + \dots + h_n(n'x))$$

$$= h_1(n'x) + \dots + h_n(n'x)$$

$$= n' h_{1}(x) + \dots + n'h_{n}(x)$$

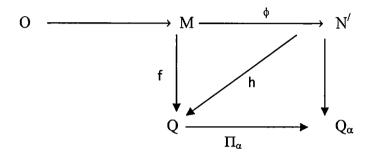
$$= \sum_{i=1}^{n} s_{i} (h_{1}(x)) + \dots + \sum_{i=1}^{n} s_{i} (h_{n}(x))$$

$$= s_{1}((h_{1}(x)) + \dots + h_{n}(x)) + \dots + s_{n}((h_{1}(x)) + \dots + h_{n}(x))$$

$$= s_{1}h(x) + \dots + s_{n}h(x)$$

$$= (\sum_{i=1}^{n} s_{i})h(x) = n'h(x).$$

We shall show the diagram



commutes. i.e. $f = h\Phi$.

Since Q is direct sum, for any $x \in N'$

$$h\phi(x) = (h_1\phi(x) + h_2\phi(x) + \dots + h_n\phi(x))$$

$$= (\Pi_{1}f(x) + \Pi_{2}f(x) + \dots + \Pi_{n}f(x))$$

$$= f(x)$$

$$\therefore h \phi = f.$$

Thus Q is injective.

Corollary 3.3.6: Let N be a dgnr. A finite direct sum of injective normal N-subgroups (ideals) of E, i.e. $Q = \bigoplus Q_{\alpha}$, where Q_{α} is normal N-subgroup (or ideal) of the group E, is injective if and only if each Q_{α} is injective .

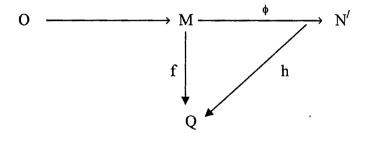
,

Theorem 3.3.7: A finite direct sum of injective N-groups, that is $Q = \bigoplus Q_{\alpha}$, where Q_{α} is N-groups is injective if and only if each Q_{α} is injective.

Proof: Let Q be injective, to show each Q_{α} is injective. Proof is same as theorem 3.3.4.

Conversely, let each Q_{α} be injective, to show Q is injective.

Now consider a diagram



where M, N' are N groups with the top row exact.

For any $\alpha = 1, 2, 3, ..., n$, there is the canonical inclusion $i_{\alpha} : Q_{\alpha} \to Q$ and the projection $\Pi_{\alpha} : Q \to Q_{\alpha}$, so there are the N-homomorphisms $\Pi_{\alpha} f : M \to Q_{\alpha}$.

Since Q_{α} is injective, there exists an N-homomophism $h_{\alpha} : N' \to Q_{\alpha}$ such that $h_{\alpha} \Phi = \Pi_{\alpha} f$.

Now define a map $h: N' \to Q$ by the formula

 $h(x) = (h_1(x), \dots, h_n(x)) \qquad \forall x \in N'.$

Then h is N-homomophism.

Since $h(x_1 + x_2) = (h_1(x_1 + x_2), \dots, h_n(x_1 + x_2))$

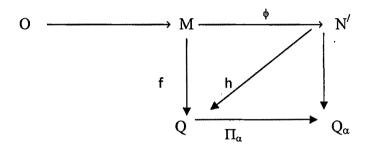
$$= (h_1(x_1) + h_1(x_2), \dots, h_n(x_1) + h_n(x_2))$$

= (h_1(x_1), ..., h_n(x_1)) + (h_1(x_2), \dots, h_n(x_2))
= h(x_1) + h(x_2)

 $h(n'x) = (h_1(n'x), ..., h_n(n'x))$

$$= (n' h_1(x), \dots, n'h_n(x))$$
$$= n' (h_1(x), \dots, h_n(x))$$
$$= n'h(x).$$

We shall show the diagram



commutes. i.e. $f = h\Phi$.

Since Q is direct sum, for any $x \in N'$

$$h\phi(x) = (h_1\phi(x), h_2\phi(x), \dots, h_n\phi(x))$$
$$= (\Pi_1 f(x), \Pi_2 f(x), \dots, \Pi_n f(x))$$
$$= f(x)$$
$$\therefore h \phi = f.$$

Thus Q is injective.

Theorem 3.3.8: Let N be a near-ring and $\{Q_i\}_{i \in I}$ a family of E-injective N-groups. Then the product $Q = \prod_{i \in I} Q_i$ is E- injective.

.

•

Proof: Let $A \subseteq E$ be an N-subgroup of E and $f: A \rightarrow Q$ an N-homomorphism.

It is enough to show f can be extended to E.

For $i \in I$ denote $\pi_i : Q \rightarrow Q_i$ the projection map.

Since Q_i is E-injective for any $i \in I$, so the N-homomorphism $\pi_i f : A \to Q_i$ can be extended to $f'_i : E \to Q_i$. Then we have $f' : E \to Q$ by $f'(e) = (f'_i(e))_{i \in I}$.

If $a \in A$, then f'(a) = f(a), so f' is an extension of f.

Thus Q is E-injective.

Definition 3.3.9: For an N-group A an element $x \in A$ is said to be dominated by N-group E if $Ann_N(x) \supset Ann_N(e)$ for some $e \in E$.

Given a family $\{A_{\alpha}\}_{\alpha \in J}$ of N-groups. Let x be the element of $\prod_{\alpha \in J} A_{\alpha}$ whose α component is x_{α} .

We define $I_x = \{n \in N / nx \in \bigoplus_{\alpha \in J} A_{\alpha}\}.$

Then $x \in \prod_{\alpha \in J} A_{\alpha}$ is called a special element if $I_x x_{\alpha} = 0$ for almost all α . In other words \exists a finite subset F of J such that $nx_{\alpha} = 0$ for all $n \in I_x$ and for all $\alpha \in F$.

Theorem 3.3.10: If $\bigoplus_{\alpha \in J} A_{\alpha}$ is E -injective then each A_{α} is E –injective and every element of $\prod_{\alpha \in J} A_{\alpha}$ dominated by E is special.

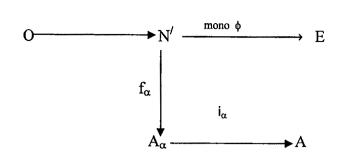
Proof: Let $A = \bigoplus_{\alpha \in J} A_{\alpha}$ be E injective.

Consider the N-homomorphism $f_{\alpha}: N' \to A_{\alpha}$.

: A is direct sum, N' some N-group of N for any $\alpha \in J$, there is the inclusion map

 $i_\alpha\colon A_\alpha\to A$ and the projection $\pi_\alpha\colon A\to A_\alpha$ such that $\pi_\alpha\:i_\alpha=1_{A_\alpha}$.

Consider a diagram,



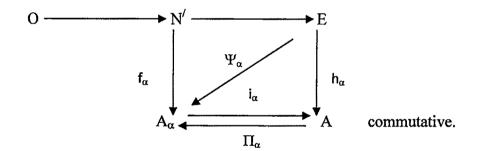
with top row exact.

Since A is E - injective, \exists a homomorphism $h_{\alpha} : E \rightarrow A$ such that $h_{\alpha} \Phi = i_{\alpha} f_{\alpha}$.

Now define Ψ_{α} : $E \rightarrow A_{\alpha}$ by $\Psi_{\alpha} = \pi_{\alpha}h_{\alpha}$.

Since $\pi_{\alpha}i_{\alpha} = 1_{A_{\alpha}}$, it follows that $\Psi_{\alpha}\Phi = \pi_{\alpha}h_{\alpha}\Phi = \pi_{\alpha}i_{\alpha}$ $f_{\alpha} = f_{\alpha}$

So the diagram



Thus A_{α} is E -injective.

Let $x \in \Pi_{\alpha}A_{\alpha}$ be dominated by $E \Rightarrow$ there is an $e \in E$ such that $Ann_N(x) \supset Ann_N(e)$.

Then it gives an N-homomorphism $f: Ne \to \Pi A_{\alpha}$ defined by $\lambda e \to \lambda x$ ($\lambda \in N$).

- Let $(\lambda_1 e), (\lambda_2 e) \in \text{Ne and}$
- $f(\lambda_1 e) \neq f(\lambda_2 e)$
- $\Rightarrow (\lambda_1 x) \neq (\lambda_2 x)$
- $\Longrightarrow (\lambda_1 \lambda_2\,) x \neq 0$

$$\Rightarrow (\lambda_1 - \lambda_2) \notin \operatorname{Ann}_N(\mathbf{x})$$

$$\Rightarrow (\lambda_1 - \lambda_2) \notin \operatorname{Ann}_N(\mathbf{e}) \text{ [since } \operatorname{Ann}_N(\mathbf{x}) \supset \operatorname{Ann}_N(\mathbf{e})\text{]}$$

$$\Rightarrow (\lambda_1 - \lambda_2) \mathbf{e} \neq 0$$

$$\Rightarrow (\lambda_1 \mathbf{e}) \neq (\lambda_2 \mathbf{e})$$

$$\therefore \text{ the mapping is well defined .}$$

$$f(\lambda_1 e + \lambda_2 e) = f((\lambda_1 + \lambda_2)e)$$
$$= (\lambda_1 + \lambda_2)x$$
$$= (\lambda_1 x + \lambda_2 x)$$
$$= f(\lambda_1 e) + f(\lambda_2 e)$$

Next for $n \in N$, $f(n(\lambda_1 e)) = f((n\lambda_1)e)$

$$= (n\lambda_1)x$$
$$= n(\lambda_1 x)$$
$$= n f(\lambda_1 e)$$

Thus f is an N-homomorphism .

The image of the N-subgroup $I_x e$ by f is clearly $I_x x$ ($\subset \oplus A_\alpha$).

Thus the restriction of f to $I_x e$ is regarded as an N-homomorphism $I_x e \to \oplus \ A_\alpha.$

Since $\oplus A_{\alpha}$ is E-injective and so Ne-injective by proposition 3.3.2.

So, we get N-homomorphism Ne $\rightarrow \oplus A_{\alpha}$ which means that there exists a $u \in \oplus A_{\alpha}$ such that $\lambda x = \lambda u$ (for all $\lambda \in I_x$).

It follows that $I_x x_\alpha = I_x u_\alpha$ for all $\alpha \in J$.

But since $u_{\alpha}=0$ for almost all α , it follows that $I_x x_{\alpha}=0$ for almost all α too

 \Rightarrow x is special.

Theorem 3.3.11: If {Ne} $_{e \in E}$ is an independent family of normal N-subgroups of N-group E in a dgnr near-ring N, $\bigoplus_{\alpha \in J} A_{\alpha}$ is commutative N-group then each A_{α} is E –injective and every element of $\prod_{\alpha \in J} A_{\alpha}$ dominated by E is special implies $\bigoplus_{\alpha \in J} A_{\alpha}$ is E -injective.

Proof: let each A_{α} is E -injective and every element of $\prod_{\alpha \in J} A_{\alpha}$ dominated by E is special.

Let $e \in E$ and consider the N- subgroup Ne of E.

Let J be an N-subgroup of N.

Then Je is an N-subgroup of Ne.

[Let se, te \in Je, s, t \in J, se + te = (s + t)e \in Je and for $n \in N$, n(se) = (ns)e \in Je, since ns \in J as J is N-subgroup of N]

Let there be given an N- homomorphism $h: Je \to \oplus A_\alpha.$

Then since $\oplus A_{\alpha} \subset \prod A_{\alpha}$ and $\prod A_{\alpha}$ is E-injective (as each A_{α} is E-injective, by proposition 3.3.8) whence Ne- injective (by proposition 3.3.2), h can be extended to an N-homomorphism Ne $\rightarrow \prod A_{\alpha}$.

Let $x \in \prod A_{\alpha}$ and we define the N-homomorphism as $\lambda e \to \lambda x$ ($\lambda \in N$)

Therefore it follows that $Jx = h(Je) \subset \bigoplus A_{\alpha}$, whence $J \subset I_x$.

On the other hand since clearly $Ann_N(e) \subset Ann_N(x)$, x is dominated by E and thus x is special by assumption

 \Rightarrow I_xx_{α} =0 whence Jx_{α} =0 for almost all α .

Let u be the element of $\oplus A_{\alpha}$, whose α -component is x_{α} or 0 according as $Jx_{\alpha} \neq 0$ or $Jx_{\alpha} = 0$.

Then it is clear that $\lambda u = \lambda x$ for all $\lambda \in J$.

Further, it is also clear that $Ann_N(e) \subset Ann_N(x) \subset J$ and therefore the mapping gives an N-homomorphism $f: Ne \to \bigoplus A_{\alpha}$ which is an extension of h, because $f(\lambda e) = \lambda u = \lambda x \forall \lambda \in J$.

This implies that $\oplus A_{\alpha}$ is Ne-injective and so E-injective by proposition 3.3.3.

Corollary 3.3.12: Let N be a dgnr. If {Ne} $_{e\in E}$ is an independent family of normal Nsubgroups of N-group E, $\bigoplus_{\alpha\in J} A_{\alpha}$ is commutative N-group then $\bigoplus_{\alpha\in J} A_{\alpha}$ is E -injective if and only if each A_{α} is E-injective and every element of $\prod_{\alpha\in J} A_{\alpha}$ dominated by E is special implies $\bigoplus_{\alpha\in J} A_{\alpha}$ is E-injective

Theorem 3.3.13: Suppose $\{A_{\alpha}\}_{\alpha \in J}$ is a family of E-injective N-groups such that for every countable subset k of J, $\bigoplus_{\alpha \in K} A_{\alpha}$ is E - injective. Then $\bigoplus_{\alpha \in J} A_{\alpha}$ is itself E - injective.

Proof: Assume that $\bigoplus_{\alpha \in J} A_{\alpha}$ is not E - injective.

Then by theorem 3.3.10, there exists an $x \in \prod_{\alpha \in J} A_{\alpha}$ which is dominated by E but is not special $\Rightarrow I_x x_{\alpha} \neq 0$ for infinitely many $\alpha \in J$.

Let k be an infinite countable subset of the infinite set $\{\alpha \in J \mid I_x x_\alpha \neq 0\}$.

Let y be element of $\prod_{\alpha \in k} A_{\alpha}$, whose α - component y $_{\alpha}$ is equal to x_{α} for all $\alpha \in K$.

Then clearly $I_x \subset I_y$, so that it follows that y is dominated by E and $I_y y_{\alpha} = I_y x_{\alpha} \neq 0 \quad \forall \alpha \in K$.

This implies again by theorem 3.3.10, that $\bigoplus_{\alpha \in K} A_{\alpha}$ is not E -injective (because each A_{α} is E - injective by our assumption). This is a contradiction and so the proof is complete.

3.4: E-injective and injective N-groups with chain conditions:

In this section we study E-injective N-groups with chain conditions. In particular, E-injective N-groups with descending chain condition are investigated. It is shown that the singular and semi-simple characters play a vital role in characterization of E-injective Ngroups.

Theorem 3.4.1: Let N be dgnr. If $\{Ne\}_{e \in E}$ is an independent family of normal N-subgroups of N-group E, $\bigoplus_{\alpha \in J} A_{\alpha}$ is commutative N-group then direct sum of any family $\{A_{\alpha}\}$ of E injective N- groups is E - injective if E is Noetherian.

Proof: let $\{A_{\alpha}\}$ be a family of E-injective N- group.

Let x be an element of ΠA_{α} , dominated by e.

Then there is an $e \in E$ such that $Ann_N(e) \subset Ann_N(x)$.

Consider Ixe.

Since clearly $Ann_N(x) \subset I_x$, whence $Ann_N(e) \subset I_x$, it follows that $I_x / Ann_N(e) \cong I_x e$.

On the other hand Ixe is a N-subgroup of Ne, so N subgroup of Noetherian N-group E.

Hence, I_x /Ann_N(e) is finitely generated

 \Rightarrow there exists a finite number of elements $\lambda_1, \lambda_2, \dots, \lambda_n$ of I_x such that

 $I_x = N\lambda_1 + N \lambda_2 + \dots + N\lambda_n + Ann_N(e)$

It follows therefore

 $I_x x_\alpha = N\lambda_1 x_\alpha + N \lambda_2 x_\alpha + \dots + N\lambda_n x_\alpha$ for all components x_α .

Since however for each i, $\lambda_i x_{\alpha} = 0$, for almost all α , it follows that $I_x x_{\alpha} = 0$ for almost all α

 \Rightarrow x is special.

Thus \oplus A_{α} is E- injective by theorem 3.3.11.

Proposition 3.4.2: If {Ne} $_{e \in E}$ is an independent family of normal N-subgroups of N-group E in a dgnr near-ring N, direct sum of E-injective N-groups is commutative N-group then E is Noetherian V N-group(V_c N-group) implies every strictly semi- simple N-group is E-injective.

Proof: E is Noetherian V- N-group

 \Rightarrow E is Noetherian and every simple N-group is E- injective.

Again direct sum of E-injective N-groups is E- injective as E is Noetherian

(by theorem 3.4.1).

Let K be any strictly semi simple N-group

 \Rightarrow K is direct sum of simple normal N-subgroups.

So K is E- injective.

Proposition 3.4.3: For a finitely generated N-group E every countably generated strictly semi- simple N-group is E- injective implies E is weakly Noetherian V_c N-group.

Proof: Suppose $\{A_{\alpha}\}_{\alpha \in J}$ is a family of N-groups such that for every countable subset K of J, $\bigoplus_{\alpha \in K} A_{\alpha}$ is E- injective. Then by theorem 3.3.13 $\bigoplus_{\alpha \in J} A_{\alpha}$ itself E-injective.

Now given that every countably generated strictly semi simple N-group is E-injective.

To show E is weakly Noetherian and every simple commutative N-group is E-injective.

Let U be a countably generated strictly semi- simple N-group.

Then $U = \bigoplus U_{\alpha}$, where U_{α} is simple normal N-subgroups, so U_{α} 's can be taken as commutative N-groups and $\alpha \in K$, K is countable subset of J (as U countably generated).

Given U is E-injective. So we have $\oplus U_{\alpha}$, $\alpha \in J$ is also E-injective (By theorem 3.3.13).

So by theorem 3.3.10, we get every U_{α} is E-injective

 \Rightarrow E is V_c N-group.

Next to show E is weakly Noetherian.

Given E is finitely generated and W countably generated semi-simple N-group & W is Einjective.

Let $N_1 \subseteq N_2 \subseteq N_3 \subseteq \dots \dots$ be an ascending chain of distinct ideals of E.

Let $f_K : N_K \rightarrow W$ $(k = 1, 2, 3, \dots, \infty)$

As W is E-injective, for inclusion map $i_K:N_K\to E$, \exists a map $\gamma_K:E\to W$ s.t. $f_K=\gamma_K\,i_K$

Let $N' = \sum_{k=1}^{\infty} N_k$

Define the map $f: N' \rightarrow W$ by

 $f(x) = \sum_{k=1}^{\infty} f_k(x)$

$$=\sum_{k=1}^{\infty}\gamma_{k}i_{k}(x)$$

f is well defined.

: W is E-injective, \exists a map g : E \rightarrow W extending f.

But E is finitely generated & $g(E) \subseteq W$, w countably generated. So g can be defined as

$$g(x) = \sum_{k=1}^{m} \gamma_k i_k(x)$$

for some positive integer m, which gives chain of ideals must be finite.

Corollary 3.4.4: For a finitely generated N-group E, every strictly semi- simple N-group is E- injective implies E is weakly Noetherian V_c N-group.

Proposition 3.4.5: For dgnr N, if E is a finitely generated S³I-N-group, then $\frac{E}{Soc(E)}$ is a

weakly Noetherian V_cN-group.

Proof: From the above corollary 3.4.4, it is enough to show that every strictly semi-simple N-group is $\frac{E}{Soc(E)}$ injective.

Let L be a strictly semi-simple N-group

So as N dgnr, L is a semi-simple N-group.

 $\frac{M}{Soc(E)} \text{ an ideal of } \frac{E}{Soc(E)} \cdot f : \frac{M}{Soc(E)} \to L \text{ is a non-zero N-homomorphism.}$ Let $\frac{K}{Soc(E)} = \text{Kerf}$.

We claim K is essential ideal in M.

For if $K \cap I = 0$ for some non-zero ideal I of M then $I \cong \frac{I+K}{K}$ and since the latter is isomorphic to an ideal of L, it follows that for some ideal $I_1 \neq 0$ and contained in I that $I_1 \subset$ L, hence $I_1 \subseteq Soc(E) \subseteq K$, a contradiction.

Now $M/_K$ singular, we may take L singular, since $f(M/_K) \subseteq Z(L)$.

Let $\eta: M \longrightarrow \frac{M}{Soc(E)}$ denote the quotient map and consider the map $f.\eta: M \longrightarrow L$.

: L is E-injective f. η extends to a map of E into L.

: Soc(E) ⊆ K. This yields a map of $\frac{E}{Soc(E)}$ into L by proposition 3.2.3.

Proposition 3.4.6: Let N be a dgnr If E is an N-group satisfying the following conditions

- (i) {Ne} $_{e \in E}$ is an independent family of normal N-subgroups of E,
- (ii) direct sum of E-injective N-groups is a commutative N-group
- (iii) No non-zero homomorphic image of Nx, ∀x(≠ 0) ∈ Soc(E), is semi-simple, singular
- (iv) $\frac{E}{Soc(E)}$ is Noetherian V N-group,

then E is an S³I-N-group.

Proof: Let L be a strictly semi-simple singular N-group.

Let M be an N-subgroup of E.

 $f: M \rightarrow L$ a non-zero map with kerf = K.

Then by given condition $Soc(E) \cap M$ is contained in K.

[For $x \in Soc(E) \cap M \Rightarrow x \in Soc(E)$, $x \in M \Rightarrow Nx \subseteq Soc(E)$, $Nx \subseteq M \Rightarrow Nx \in Soc(E) \cap M$].

So by proposition 3.2.3, \exists an N-homomorphism $f': \frac{M}{Soc(E) \cap M} \rightarrow L$.

Since $\frac{M}{\text{Soc}(E) \cap M} \cong \frac{\text{Soc}(E) + M}{\text{Soc}(E)}$, so $f' : \frac{\text{Soc}(E) + M}{\text{Soc}(E)} \to L$.

As $\frac{E}{Soc(E)}$ is Noetherian V N-group and L semi-simple singular by proposition 3.4.2, L is

 $\frac{E}{\text{Soc}(E)} \text{-injective, that is } f' \text{ is extended to } g': \frac{E}{\text{Soc}(E)} \to L.$

If we define $g: E \to L$ by $g(e) = g'(\overline{e} + \text{Soc}(E))$. g is extension of f.

Proposition 3.4.7: Let E be an N-group. Then E/M is weakly Noetherian for every essential ideal M of E if and only if E has A.C.C. on essential ideals.

Proof: Let M be an essential ideal of E.

Then E/M weakly Noetherian

We show E has A.C.C. on essential ideals.

Let $M_1 \subset M_2 \subset M_3 \subset ... \ldots \rightarrow (1)$ be a chain of ideals of E where $M_i \leq_e E$.

Considering an essential N-subgroup $M \subseteq M_i \,\,\forall \, i$, we can construct another chain

 $M_1/M \subset M_2/M \subset M_3/M \subset \dots \dots \text{ of } E/M.$

Since E/M is weakly Noetherian we get $M_i / M = M_{i+1} / M$ for some i.

Now $M_i \subset M_{i+1}$. Our aim is to show $M_{i+1} \subset M_i$.

Let $x_{i+1} \in M_{i+1}$ but $x_{i+1} \notin M$.

Then $x_{i+1} + M \in M_{i+1}/M \Rightarrow x_{i+1} + M \in M_i /M \Rightarrow x_{i+1} \in M_i$ (since $x_{i+1} \notin M$).

So $M_1 = M_{1+1}$.

 \Rightarrow E has A.C.C. on essential ideals.

Converse is clear.

Proposition 3.4.8: N-group E is almost weakly Noetherian if and only if E/M is weakly Noetherian for every essential ideal M of E.

Proof: Let E/SocE be weakly Noetherian.

We know if N ideal of M, M weakly Noetherian \Leftrightarrow N & $^{M}/_{N}$ weakly Noetherian, by proposition 4.1.7.

M is essential ideal of E and SocE is the intersection of all essential ideals \Rightarrow Soc E \subseteq M.

$$\Rightarrow E'_{SocE}$$
 is weakly Noetherian $\Leftrightarrow M'_{SocE}$ and $\frac{E'_{SocE}}{M'_{SocE}} \cong E'_{M}$ weakly Noetherian.

Conversely, $E/_M$ is weakly Noetherian for every essential ideal M of E.

We show $\frac{E}{SocE}$ is weakly Noetherian. It is enough to show that every essential ideal of $\frac{E}{SocE}$ is finitely generated by proposition 3.4.7.

Let
$$\frac{M}{SocE}$$
 be an essential ideal of $\frac{E}{SocE}$.

Let k be an ideal of M maximal with respect to $K \cap \text{SocE} = 0$.

Then $K \oplus SocE$ is essential in M and hence essential in E.

[K \oplus SocE ideal of M. let M' ideal of M such that M' \cap (K \oplus SocE) = 0.Then M' \oplus (K \oplus SocE) is a direct sum \Rightarrow M' \oplus K \oplus SocE is a direct sum. Whence (M' \oplus K) \cap SocE '= 0. By maximalility of K, (M' \oplus K) = K, i.e M' = 0.]

Then $\frac{E}{K \oplus \text{SocE}}$ is weakly Noetherian. So $\frac{M}{K \oplus \text{SocE}}$ is finitely generated.

From the exactness of the sequence $0 \to K \to \frac{M}{\text{SocE}} \to \frac{M}{K \oplus \text{SocE}} \to 0$, it suffices to show K is finitely generated.

We claim that K is finite dimensional.

For, if not \exists an infinite direct sum of non-zero ideals $\bigoplus_{i \in I} K_i$ which is essential in K.

Since $K_i \cap \text{Soc } E = 0$, each K_i has a proper essential ideal T_i .

[since $K_i \cap \text{SocE} = \text{Soc } K_i = 0$].

Let $T = \bigoplus_{i \in I} T_i$.

Then T is an essential ideal of K.

Let K' be an ideal of K, $T = \bigoplus_{i \in I} T_i$, where T_i are essential ideals of K₁.

Now $K' = \bigoplus_{i \in I} K'_i$, $K'_i \subseteq K_i$. Then $T_i \cap K'_i \neq 0$ $\Rightarrow \bigoplus_{i \in I} T_i \cap K'_i \neq 0$ $\Rightarrow T \cap \bigoplus_{i \in I} K'_i \neq 0$. $\Rightarrow T \cap K' \neq 0$.

Again SocE is an essential ideal of SocE and $T \cap SocE = 0$.

So $T \oplus SocE \leq_e K \oplus SocE \Rightarrow T \oplus SocE$ is an essential ideal of E.

Hence $E_{T \oplus SocE}$ is weakly Noetherian,

As ideal of a weakly Noetherian N-group is weakly Noetherian, $\frac{\bigoplus_{i \in I} K_i}{T \oplus \text{SocE}}$ is weakly Noetherian

 $\Rightarrow \frac{\oplus_{i \in I} T_i}{T \oplus \text{SocE}} \text{ is weakly Noetherian.}$

$$\frac{\bigoplus_{i \in I} T_i}{T \oplus \text{ SocE}} \subseteq \frac{\bigoplus_{i \in I} K_i}{T \oplus \text{ SocE}} \text{ and } \frac{\bigoplus_{i \in I} K_i}{T \oplus \text{ SocE}} \text{ weakly Noetherian imply} \frac{\frac{\bigoplus_{i \in I} K_i}{T \oplus \text{ SocE}}}{\frac{\bigoplus_{i \in I} T_i}{T \oplus \text{ SocE}}} \cong \frac{\bigoplus_{i \in I} K_i}{\bigoplus_{i \in I} T_i} \cong \bigoplus_{i \in I} \frac{K_i}{T_i} \text{ is }$$

weakly Noetherian, a contradiction, since it is an infinite direct sum of non zero N-groups.

Thus K is finite dimensional.

Let $(K_i)_{i=1}^n$ be a family of non-zero ideals of K such that $\bigoplus_{i=1}^n K_i$ is essential in K.

 $\Rightarrow \oplus_{i=1}^{n} K_{i} \leq_{e} K, \text{ so } \oplus_{i=1}^{n} K_{i} \oplus \text{ SocE} \leq_{e} K \oplus \text{ SocE } \leq_{e} E.$

$$\Rightarrow \oplus_{i=1}^{n} K_{i} \oplus \text{SocE} \leq_{e} E.$$

 $\Rightarrow \frac{E}{\oplus_{i=1}^{n} K_{i} \oplus \text{Soc } E} \text{ is weakly Noetherian.}$

We define
$$f: \frac{K}{\bigoplus_{i=1}^{n} K_{i}} \rightarrow \frac{K}{\bigoplus_{i=1}^{n} K_{i} \oplus \text{Soc } E}$$
 by $f(k + \bigoplus_{i=1}^{n} K_{i}) = f(k + \bigoplus_{i=1}^{n} K_{i} \oplus \text{Soc } E)$

Now f($k_1 + \bigoplus_{i=1}^n K_i$) \neq f($k_2 + \bigoplus_{i=1}^n K_i$)

 $\Rightarrow (k_1 + \bigoplus_{i=1}^n K_i \oplus \text{SocE}) \neq (k_2 + \bigoplus_{i=1}^n K_i \oplus \text{SocE})$

Next, let $\overline{k} \in \frac{K}{\oplus_{i=1}^{n} K_{i} \oplus \text{Soc } E}$.

If $\overline{k} = k_1 + \bigoplus_{i=1}^n K_i \oplus \text{Soc } E, \exists k_1 + (\bigoplus_{i=1}^n K_i) \in \frac{K}{\bigoplus_{i=1}^n K_i}$ such that

$$f(k_1 + (\bigoplus_{i=1}^n K_i)) = k_1 + (\bigoplus_{i=1}^n K_i \oplus L).$$

So f is onto, that is f is isomorphism.

Thus $\frac{K}{\bigoplus_{i=1}^{n}K_{i}}$ is isomorphic to the ideal $\frac{K}{\bigoplus_{i=1}^{n}K_{i}\oplus \text{Soc }E}$ of weakly noetherian N-group $\frac{E}{\bigoplus_{i=1}^{n}K_{i}\oplus \text{Soc }E}$. So we have that $\frac{K}{\bigoplus_{i=1}^{n}K_{i}}$ is finitely generated, whence K is finitely generated.

Thus $\frac{E}{SocE}$ is weakly Noetherian.

Proposition 3.4.9: If N-group E is almost weakly Noetherian then E has A.C.C. on essential ideals.

Proof: Given $\frac{E}{SocE}$ is weakly Noetherian.

To show E has A.C.C. on essential ideals.

Soc E is the intersection of all essential ideals of E.

Hence if $\frac{E}{SocE}$ is weakly Noetherian, E has A.C.C. on essential ideals.

Proposition 3.4.10: Let N be a dgnr. If N-group E has A.C.C. on essential ideals then E is almost weakly Noetherian.

Proof: We assume that E has A.C.C. on essential ideals.

Let $A \subseteq B$ be ideals of M such that A is essential in B.

By Zorn's lemma there is a maximal ideal L of E such that $L \cap A=0$.

And $A \oplus L$ is essential in E.

Since $A + L = A \oplus L$, so that $A \oplus L$ is an ideal of E. Let C ideal of E with $C \cap (A \oplus L)$ =0. Then $(A \oplus L) \oplus) C$ is direct $\Rightarrow (A \oplus L) + C = (A \oplus L \oplus C)$ whence $A \cap (L \oplus C) =$ 0. By maximality of L we obtain $L \oplus C = L$ Thus C = 0. $\therefore A \oplus L$ essential ideal of E.

Hence $E/(A \oplus L)$ satisfies ACC on its ideals.

We consider the map $\phi : B \oplus L \longrightarrow B/A$ by $b + 1 \longrightarrow b + A$. [N dgnr]

```
Now \phi(b_1 + l_1 + b_2 + l_2)

= \phi(b_1 + b_2 + l_1 + l_2)

=(b_1 + b_2) + A

= b_1 + A + b_2 + A

=\phi(b_1 + l_1) + \phi(b_2 + l_2)

Again, \phi n(b + l)

= \phi(n_1 + n_2 + n_3 + \dots + n_k)(b + l)
```

$$= \phi \{ n_1(b+1) + n_2(b+1) + \dots + n_k(b+1) \}$$

= $\phi \{ (n_1b+n_1l) + (n_2b+n_2l) + \dots + (n_kb+n_kl) \}$
= $(n_1b+A) + (n_2b+A) + \dots + (n_kb+A)$
= $(n_1b+n_2b + \dots + n_kb) + A$
= $nb + A$
= $n(b+A)$
= $n(b+A)$

So ϕ is an N-homomorphism.

Ker
$$\phi = \{ \overline{x} / \phi(\overline{x}) = A \}$$

= $\{ a + l / \phi(a + l) = A \}$
= $A + L$

As $A \leq B$ and $B \cap L = 0$, $A \cap L = 0$.

$$\therefore \text{ Ker}\phi = A \oplus L$$

So $B/A \cong (B \oplus L)/(A \oplus L)$.

Hence we get B/A also satisfies acc on its ideals.

'3

In particular, every uniform ideal of E satisfies acc on its ideals.

Since if I is uniform ideal of E and $J_1 \subseteq J_2 \subseteq \dots \dots$ an ascending chain of ideals of I. As I is uniform, each $J_i \leq_{\circ} I$.

 \Rightarrow I/J_i satisfies acc on its ideals.

 \Rightarrow I satisfies acc on essential ideals.(by proposition 3.4.7)

As each $J_t \leq_e I$, $\exists t$ such that $J_t = J_{t+1} \Rightarrow I$ satisfies acc on its ideals.

Now, let H be an ideal of E which is maximal with respect to the condition $H \cap Soc(E) = 0$.

Then $H \oplus Soc(E)$ is essential in E and $E'_{H \oplus Soc(E)}$ satisfies acc on its ideals.

Hence for proving that E/Soc(E)satisfies acc on its ideals it is enough to prove that H satisfies acc on its ideals.

We first show that H has finite Goldie dimension.

Assume that H contains an infinite direct sum $X = X_1 \oplus X_2 \oplus \dots \dots$ of non-zero ideals X_i .

Since, $Soc(X_i) = X_i \cap Soc(E)$, each X_i contains a proper essential ideal Y_i and

 $Y = Y_1 \bigoplus Y_2 \bigoplus \dots \dots$ is an essential ideal of X.

By the above $X/_Y$ satisfies acc on its ideals.

But this is impossible because

$$X_{Y_1} = X_1_{Y_1} \oplus X_2_{Y_2} \oplus \dots \dots$$
 with each $X_i_{Y_i}$ non zero.

This contradiction shows that H has finite Goldie dimension k (say). Then H contains k independent uniform ideals U_i such that $U = U_1 \bigoplus U_2 \bigoplus \dots \bigoplus U_k$ is essential in H.

By the above U and H/U satisfies acc on ideals.

Hence H satisfies acc on ideals.

Proposition 3.4.11: if E is non-singular and Every singular homomorphic image of E is weakly Noetherian then E is almost weakly Noetherian.

١

Proof: As M is essential ideal of E and E is non-singular, E/M is singular.

Again E/M is homomorphic image of E, by given condition E/M is weakly Noetherian.

Proposition 3.4.12: E is non-singular and almost weakly Noetherian and in E every weakly essential N-subgroup is essential then every singular homomorphic image of E is weakly Noetherian.

Proof: Let $f: E \rightarrow L$ be an N-epimorphism and L is singular.

Now E is non-singular and kerf \subseteq E, L \cong $^{E}/_{kerf}$ singular,

so kerf $\leq_{we} E$ by proposition 3.1.7.

Then $Soc(E) \subseteq kerf$.

So by proposition 3.2.3 we get $L \cong \frac{E}{Soc(E)}$.

As E is almost weakly Noetherian, L is weakly Noetherian.

Corollary 3.4.13: The following conditions on an N-group E of a dgnr near-ring N are equivalent:

- i. E is almost weakly Noetherian.
- ii. E/M is weakly Noetherian for every essential ideal M of E...
- iii. E has A.C.C. on essential ideals.Moreover if E is non-singular, every weakly essential N-subgroup is essential then above conditions are equivalent to
- iv. Every singular homomorphic image of E is weakly Noetherian.

Proposition 3.4.14: Near-ring N is weakly Noetherian if $\bigoplus_{i \in I} E_i$ of injective N-groups is injective.

Proof: Let $\bigoplus_{i \in I} E_i$ of commutative N-groups is injective and that

 $I_1 \leq I_2 \leq \dots \dots$ be an ascending chain of left ideals in N.

Let
$$I = \bigcup_{i=1}^{\infty} I_i$$
.

If $a \in I$, then $a \in I_1$ for all but finitely many $I \in N$.

So there is an

 $f: I \rightarrow \bigoplus_{i=1}^{\infty} E(N/I_i)$

defined via $\Pi_i f(a) = a + I_i$ $(a \in I)$.

By theorem 4.1.9, there is an $x \in \bigoplus_{i=1}^{\infty} E(N/I_i)$ such that f(a) = ax for all $a \in I$. Now choose *n* such that $\prod_{n+k} I(X) = 0, k = 0, 1, \dots \dots$

So I/ $I_{n+k} = \prod_{n+k} (f(I)) = \prod_{n+k} (I_x) = I \prod_{n+k} (x) = 0$

or, equivalently, $I_n = I_{n+k}$ for all $k = 0, 1, 2, \dots \dots$

So, N is weakly Noetherian.

Definition 3.4.15: An N-subgroup U of N-group E is called pure in E if $IU = U \cap IE$ for each ideal I of N.

Example 3.4.16: $N = \{0, a, b, c\}$ is the Klein's four group with multiplication

•	0	a	b	С
0	0	0	0	0
a	0	a	b	с
b	0	b	0	0
с	0	с	b	с

Then (N, +, .) is a near-ring. Here A = $\{0, c\}$ is N-subgroup of _NN and B = $\{0, b\}$ is ideal of _NN.

Now BA = {0} and A \cap BN = {0, c} \cap {0, b} = {0}. So BA = A \cap BN. So, A is pure in _NN.

Proposition 3.4.17: If N is non-singular, SocN is pure and every injective right N-group is injective as an N/K-group for ideal K of N then direct sum of (countably many) injective hulls of simple weak singular left N-groups is injective implies N is an almost weakly Noetherian near-ring.

Proof: Let $\{S_i\}_{i \in I}$ be a family of simple weak singular N/Soc(N)- groups.

Since a simple N-group is weak singular if and only if it is annihilated by Soc(N).

For let E is simple and weak singular. So $Z_w(E) = \{x \in E \mid Ix = 0, I \leq_{ei} N\} = E$.

So $x \in E \Rightarrow \exists I \leq_{ei} N$ such that $Ix = 0 \Rightarrow Soc(N) x = 0$. Thus E is annihilated by Soc(N).

Again let E is annihilated by Soc(N), we get Soc(N) E = 0.

$$\Rightarrow$$
 Soc(N) \subseteq Ann(E).

Now we show $Ann(E) = \{x \in N / xE = 0\}$ is essential ideal in N.

If possible Ann(E) is not essential ideal in N.

Then $Ann(E) \cap J = 0$ for some non-zero ideal J of N.

If $\forall x \in E \ f : J \rightarrow Jx$, defined by f(j) = jx, it is a well defined N-homomorphism.

$$f(j_1) \neq f(j_2) \Rightarrow (j_1x) \neq (j_2x) \Rightarrow (j_1 - j_2)x \neq 0 \Rightarrow (j_1 - j_2) \neq 0 \Rightarrow j_1 \neq j_2$$
. So f is well-defined.

So f is one-one.

Again for every $jx \in Jx$, $\exists j \in J$ such that f(j) = jx. So f is onto.

$$f(j_1 + j_2) = (j_1 + j_2)x = (j_1 x + j_2 x) = f(j_1) + f(j_2),$$

f(nj) = (nj)x = n(jx) = nf(j). So f is N-isomorphism.

 $\Rightarrow \forall x \in E, J \cong Jx.$

Again $Z(N) = 0 \Rightarrow Z(J) = 0 \Rightarrow Z(Jx) = 0$

 $\Rightarrow \forall I \leq_{ei} N, I(Jx) \neq 0 \Rightarrow SocN.(Jx) \neq 0.$

But $Jx \subseteq E$ and SocN. $E = 0 \Rightarrow$ SocN.(Jx) = 0, a contradiction.

So Ann(E) is essential ideal of N, so E is weak singular.

It follows that each ${}_NS_i$ is weak singular as an N- group.

Since SocN is pure we get $Soc(_NN).E(_NS_i) \cap _NS_i = SocN.S_i, \forall i \in I.$

As each _NS_i is annihilated by Soc(N),

 $SocN.S_{i} = 0. So Soc(_{N}N).E(_{N}S_{i}) \cap _{N}S_{i} = 0. i.e. \forall x \in E(_{N}S_{i}), Soc(_{N}N).x \cap _{N}S_{i} = 0.$

 $E(_{N}S_{i})$ is an essential extension of $_{N}S_{i}$, and since $Soc(_{N}N)$.x is N-subgroup of $E(_{N}S_{i})$ we get

 $\forall x \in E(NS_i), Soc(NN).x = 0$.

Thus $E(NS_i)$ is annihilated by Soc(N), $\forall i \in I$.

We claim that $\forall i \in I, E(NS_i)$ is weak singular as N-group.

For $x \in E(NS_i)$ with $x \notin Z_w(E(NS_i))$ then $\forall I \leq_{ie} N$, $Ix \neq 0 \Longrightarrow Ann_N(x)$ is not essential in N.

So $Ann_N(x) \cap J = 0$ for some non-zero ideal J of N.

Since $J \cong Jx$ and Z(N) = 0, we infer that Z(Jx) = 0, whence $Jx \cap S_1 = 0$

[Let $Jx \cap S_i \neq 0$.

 $Z(Jx \cap S_i) = 0 \Longrightarrow \forall I \leq_{ie} N, I(Jx \cap S_i) \neq 0 \Longrightarrow SocN(Jx \cap S_i) \neq 0.$

But $(Jx \cap S_i) \subseteq E(NS_i)$ and SocN. $E(NS_i) = 0$, a contradiction].

This implies that Jx = 0.

So $J \subseteq Ann_N(x)$, a contradiction.

Now $E(_{N/Soc(N)}S_i) = \{x \in E(_NS_i) : Soc(N)x = 0\} = E(_NS_i)$ is injective as N-group.

By given condition $\bigoplus_{i \in I} E_i$ is injective as an N-group and hence injective as N/Soc(N)group. This implies that N/Soc(N) is weakly Noetherian by proposition 3.4.14.

For a distributively generated near-ring we get the following definition, note and three results.

Definition 3.4.18 [Pliz]: The Jacobson-radical of N-group E is the intersection of maximal ideals of E which is maximal as N-subgroup. We denote it by $J_2(E)$

Note 3.4.19 [Pliz]: The Jacobson-radical, $J_2(E)$ of N-group E contains all nilpotent N-subgroups of E.

Lemma 3.4.20: Let N be a GV- near-ring, then Z (E) \cap J₂(E) = 0, for every N-group E.

Proof: If Z(E) = 0, we are done.

Otherwise let $(0 \neq) x \in Z(E)$.

By Zorn's lemma , the set of all ideals M of E with $x \in M$, has a maximal member L.

The quotient N-group S = (Nx + L)/L is simple and singular, therefore E-injective.

 $[Z((Nx + L)/L) = \{ \overline{x} \in (Nx + L)/L / I\overline{x} = \overline{0} \text{ for some essential N-subgroup I of N} \}$ Let $\overline{y} \in (Nx + L)/L$ such that $\overline{y} = nx + 1 + L$.

Now for some essential N-subgroup I in N,

$$\begin{split} I\overline{y} &= \{n'\overline{y} / n' \in I\} \\ &= \{ (\sum_{i=1}^{k} s_{i})(nx + L) / n' = (\sum_{i=1}^{k} s_{i}) \in I \} \\ &= \{ s_{1}(nx + L) + s_{2}(nx + L) + \dots + s_{k}(nx + L) / n' \in I \} \\ &= \{ s_{1}nx + L + s_{2}nx + L + \dots + s_{k}nx + L / n' \in I \} \\ &= \{ (s_{1}nx + s_{2}nx + \dots + s_{k}nx) + L / n' \in I \} \ [since s_{i}nx \in L as s_{i}n \in N] \\ &= \{ L \} = \overline{0} . \end{split}$$

So $\overline{\mathbf{y}} \in Z((|\mathbf{N}\mathbf{x} + \mathbf{L})/\mathbf{L}|)]$

This means that the natural map of Nx onto S extends to all of E.

The kernel of this extension map is a maximal ideal of E which does not contain x. Whence x can not be in J_2E).

•

So Z (E) \cap J₂(E) = 0

Theorem 3.4.21: If N is a GV near-ring with A.C.C. on essential ideals and if finite intersection of essential N-subgroups of N is distributively generated, then Z(N) = 0. In particular, if N is S³ I near-ring with unity then it is non-singular.

Proof: Let $x \in Z(N)$.

Then $Ann_N(x) \subseteq Ann_N(x^2) \subseteq \dots$ is an ascending chain of essential left ideals in N, since $Ann_N(x) \leq_e N$.

So for some $t \in I^+$, $Ann_N(x^{t+1}) \leq_e N$ by proposition 1.3.3.

We claim $x^t = 0$.

Suppose $x^t \neq 0$.

Then we get $Ann_N(x^{t+1}) \cap Nx^t \neq 0$.

As N has A.C.C. on essential left ideals $\exists t \in I^+$ such that $Ann_N(x^t) = Ann_N(x^{t+1})$, whence we get $Ann_N(x^{t+k}) = Ann_N(x^t)$ for all $k \in I^+$. Let $y = n x^t (\neq 0) \in Ann_N(x^{t+1}) \cap Nx^t$ for $n \in N$. Now $y \in Ann_N(x^t) \Rightarrow y x^t = 0$ $\Rightarrow n x^{2t} = 0$

 \Rightarrow n \in Ann_N(x^{2t}) = Ann_N(x^t)

 \Rightarrow y = n x^t = 0, a contradiction.

 $i.e. \ y \in Ann_N(x^{t+1}) \Longrightarrow y \notin Ann_N(x^t) \Longrightarrow Ann_N(x^t) \neq Ann_N(x^{t+1}), a \ contradiction.$

Thus Z(N) contains nilpotent elements.

As finite intersection of essential N-subgroups of N is distributively generated, Z(N) is Nsubgroup of N. [by proposition 2.1.14]

So $J_2(N)$ contains Z(N).

By lemma 3.4.20, Z(N)=0.

For $S^{3}I$ near-ring N, N/Soc(N) is weakly Noetherian by proposition 3.4.5. Again from proposition 3.4.9, (considering N as N-group) it follows that N has acc on essential ideals when we get N is non singular.

Theorem 3.4.22: If $\{N\bar{e}\}_{\bar{e}\in \frac{N}{Soc(N)}}$ is an independent family of normal N-subgroups of N/Soc(N)-group E, direct sum of E-injective N/Soc(N)-groups is commutative N-group, then N/I is weakly Noetherian V_c N-group for every essential ideal I of N implies N/Soc(N) is weakly Noetherian V_c near-ring.

Proof: N/I is weakly Noetherian for every essential ideal I of N implies N/Soc(N) is weakly Noetherian as proposition 3.4.8.

Let L be a strictly semi-simple N/Soc(N)-group.

Then as N dgnr, L is a semi-simple N/Soc(N)-group.

I/ Soc(N) an ideal of N/Soc(N) and $f: I/ Soc(N) \rightarrow L$ a non-zero N-homomorphism.

Let Kerf = K / Soc(N).

Now K is essential in N. For if $K \cap J = 0$ for some non-zero ideal J of N then $J \cong \frac{J+K}{K}$ and since the latter is isomorphic to a ideal of L, it follows that for some ideal $I_1 \neq 0$ and contained in J that $I_1 \subseteq L$, hence $I_1 \subseteq Soc(N) \subseteq K$, a contradiction.

Thus N/K is a weakly Noetherian V_cN-group.

If $N \rightarrow N/Soc(N)$ is canonical quotient map, then (N/Soc(N))/(K/Soc(N)) is a weakly Noetherian V_cN-group. Proposition 3.4.2, yields a map of $\frac{N}{Soc(N)}$ into L. So, L is $\frac{N}{Soc(N)}$ injective.

Thus by corollary 3.4.4, N/Soc(N) is weakly Noetherian V_c near-ring.

If every injective right N/K-group is injective as an N-group we get the following result.

Theorem 3. 4.23: For a near-ring N with unity the following conditions are equivalent:

- i. N is S^2S_wI -near-ring.
- ii. N/Soc(N) is weakly Noetherian V_c near-ring.

Proof: <u>i.</u> \Rightarrow <u>ii</u>. By corollary 3.4.4, we have to show that every strictly semi-simple N/Soc(N)-group E is injective .

If E is N/Soc(N)-group then SocN.E = 0.

Now Ann(E) = { $x \in N / xE = 0$ } is essential in N.

Again as Soc(N).E = 0, Soc(N) \subseteq Ann(E). Thus Soc(N) = Ann(E), that is E is annihilated by Soc(N). Again $Z_w(E) = \{x \in E \mid Ix = 0, I \leq_{e_I} N\}$ and we get E is weak singular. For if not for some $x \in E$, $\forall I \leq_{ei} N$, $Ix \neq 0$, that is SocN.x $\neq 0$, a contradiction. By(i.) E is injective as an N-group and hence injective as an N/Soc(N)-group.

<u>ii. \Rightarrow i.</u> Let L be a semi-simple weak singular N-group.

Then L can be regarded as N/ Soc(N)-group and hence injective as N/ Soc(N)-group by (ii). So L is injective as N-group.

For near-ring N with identity and M unital N-group if for every right ideal U of N and every N-homomorphism $f: U \rightarrow M$, there exists an element m in M such that f(a) = ma for all a in U implies M is injective then we get the following results.

Proposition 3. 4.24: $\bigoplus_{i \in I} E_i$ of injective N-groups is injective if near-ring N is weakly Noetherian.

Proof: Let N be weakly Noetherian, I be an ideal of N and f: $I \rightarrow \bigoplus_A E_{\alpha}$.

Then since I is finitely generated, Imf is contained in $\bigoplus_F E_{\alpha}$ for some finite subset $F \subseteq A$.

So $\oplus_F E_{\alpha}$ is injective since finite direct sum is injective by theorem 3.3.7.

By theorem 4.1.9, as $\bigoplus_F E_{\alpha}$ is injective then for every right ideal U of N and every Nhomomorphism $f: U \to \bigoplus_F E_{\alpha}$, there exists an element m in $\bigoplus_F E_{\alpha}$ such that f(a) = ma for all $a \in U$. But m $\epsilon \oplus_A E_{\alpha}$ also. So for every right ideal U of N and every N-homomorphism $f: U \to \bigoplus_A E_{\alpha}$, there exists an element m in $\bigoplus_A E_{\alpha}$ such that f(a) = ma for all a in U. Then $\bigoplus_A E_{\alpha}$ is injective.

Proposition 3.4.25: For any near-ring N the following conditions are equivalent:

- i. N is an almost weakly Noetherian near-ring.
- ii. N/I is weakly Noetherian for every essential left ideal I of N.

iii. N has A.C.C. on essential left ideals.

Moreover if $Z(_NN) = 0$, N dgnr and every injective right N/K-group is injective as an N-group for ideal K of N we get

 iv. Direct sum of (countably many) weak singular injective left N-groups is injective.

Again if $Z(_NN) = 0$ and every injective right N-group is injective as an N/K-group for ideal K of N where SocN is pure we get

v. Direct sum of (Countably many) injective hulls of simple weak singular left Ngroups is injective.

Proof: Equivalence between (i), (ii), (iii) is clear from above corollary 3.4.13, considering N as N-group.

(i) \Rightarrow (iv). Let $\{E_i\}_{i \in I}$ be a family of weak singular left N-groups. Since $Z_w(E_i) = \{x \in E_i / Ix = 0 \text{ for } I \leq_{e_i} N\} = E_i$, we get SocN. $E_i = 0$. So each E_i can be regarded as an N/Soc(N)-groups. Since N/Soc(N) is weakly Noetherian, $\bigoplus_{i \in I} E_i$ is injective as an N/Soc(N)-group by proposition 3.4.24, hence $\bigoplus_{i \in I} E_i$ is injective as an N-group.

 $(iv) \Rightarrow (v).$ clear.

(v) \Rightarrow (i). Proposition 3.4.17

If every injective right N/K-group is injective as an N-group we get the following results:

Theorem 3.4.26: For a dgnr near-ring N, then the following conditions are equivalent:

- i. N is S^2S_wI -near-ring.
- ii. N/Soc(N) is weakly Noetherian V_c near-ring.
- N is GV-near-ring and direct sum of weak singular injective N-groups is injective.

iv. N is GV-near-ring and N has A.C.C. on essential left ideals.

Proof: i.⇔ii. From theorem 3.4.23

ii.⇒iii. From equivalence between (i) and (ii) clearly N is a GV-near-ring.

N/ Soc(N) is weakly Noetherian.

Let $\{E_i\}_{i\in I}$ be a family of weak singular left N- groups. Clearly each E_i can be regarded as an N/Soc(N)-groups.

Since N/Soc(N) is weakly Noetherian, so by proposition 3.4.24, $\bigoplus_{i \in I} E_i$ is injective as an N/Soc(N)- group. So $\bigoplus_{i \in I} E_i$ is injective as an N-group.

<u>iii.⇒i</u>. is obvious.

Theorem 3.4.27: For a dgnr GV near-ring N direct sum of weak singular injective Ngroups is injective implies N has A.C.C. on essential left ideals.

Proof: Since (iii) is equivalent to (ii) in theorem 3.4.26, we can conclude that N has A.C.C.

on essential ideals.

Theorem 3.4.28: For a dgnr GV near-ring N if every injective right N/K-group is injective as an N-group for ideal K of N and N has A.C.C. on essential left ideals then direct sum of weak singular injective N-groups is injective.

Proof: From theorem 3.4.21, Z(N) = 0.

From proposition 3.4.25 direct sum of weak singular injective N-groups is injective.