Chapter 2

HONESTY, SUPERHONESTY IN NEAR-RINGS AND NEAR-RING GROUPS

2.1 PRELIMINARIES

- 2.2 CHARACTERSTICS OF χ-HONEST N-SUBGROUPS
- 2.3 CHARACTERSTICS OF SUPERHONEST N-SUBGROUPS

2.4 SOME SPECIAL TYPES OF $\chi\text{-}HONEST$ AND SUPERHONEST N-SUBGROUPS

2. HONESTY, SUPERHONESTY IN NEAR-RINGS AND NEAR-RING GROUPS

In this chapter we discuss the notions honesty and superhonesty in near-rings and near-ring groups. The chapter is divided into four sections. Some of the contents of this chapter form the papers [57], which is published in Indian Journal of Mathematics and Mathematical Science and [58], which is published in Advances in algebra.

2.1. PRELIMINARIES:

1

This section contains some basic definitions and results which are used in the sequal. Considering χ as the set of all essential N-subgroups ($0 \notin \chi$) of N, we define χ -honest, χ -closed, χ -torsion, torsion, superhonest N-subgroups and discuss some examples.

Definition 2.1.1: Let χ be the set of all essential N-subgroups such that $0 \notin \chi$ of near ring N. Let $K \subseteq E$ be an N-subgroup of an N- group E. We say K is χ -closed N- subgroup of E or K is χ -closed in E, if for any $I \in \chi$ and any $\chi \in E$, if $Ix \subseteq K$, then $x \in K$.

Example 2.1.2: Let $N = Z_6$ be a set with operations '+' addition module 6 defined as example 1.5.1 and '.' defined by following table:

•	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	4	4	0	4	1
2	0	2	2	0	2	2
3	0	0	0	0	0	3
4	0	4	4	0	4	4
5	0	2	0 4 2 0 4 2	0	2	5

Then $(\mathbb{Z}_6, +, .)$ is a near-ring. If $A = \{0, 3\}$ then A is N-subgroup of NN. Since $N \in \chi$, Ne $\subseteq A$ for e = 0 and 3. So A is χ -closed.

Let Z be the near-ring of integers. Then 3Z is an essential N-subgroup of Z.

Now $3Z.x \in 2Z$ implies $x \in 2Z$. So the N-subgroup 2Z of Z is χ -closed.

Definition 2.1.3: Let χ be the set of all essential N-subgroups such that $0 \notin \chi$ of near ring N. Let $K \subseteq E$ be an N-subgroup of an N- group E. We say K is χ -honest N-subgroup of E or K is χ -honest in E, if for any $I \in \chi$ and any $x \in E$, if $Ix \ (\neq 0) \subseteq K$, then $x \in K$.

Example 2.1.4: Let $N = Z_6$ is a set with operations '+' as addition modulo 6 defined as

example 1.5.1 and '.' defined by following table:

•			2			
0	0 3 0 3 0 3	0	0	0	0	0
1	3	5	5	3	1	1
2	0	4	4	. 0	2	2
3	3	3 -	3	3	3	3
4	0	2	2	0	4	4
5	3	1	1	3	5	5

Then $(\mathbb{Z}_6, +, .)$ is a near-ring.

If A = {0, 3} then A is N-subgroup of NN. For N $\in \chi$, Ne ($\neq 0$) \subseteq A for e = 0 and 3.

So A is χ -honest.

Note 2.1.5: If K is χ -closed in E, then K is χ -honest in E.

Definition 2.1.6: The set $(B : a) = \{ n \in N / na \in B \}$.

Proposition 2.1.7: If B is an essential N-subgroup of E and $a \in E$ then $(B : a) \in \chi$.

Proof: Let $x, y \in (B : a) \Rightarrow xa, ya \in B$

 $\Rightarrow xa - ya \in B$ $\Rightarrow (x - y)a \in B$ $\Rightarrow (x - y) \in (B : a)$ Next $y \in (B : a) \Rightarrow ya \in B$

For any $n \in N$, $n(ya) \in NB \subseteq B$ [since B is N-subgroup of E].

So (ny)a
$$\in$$
 B \Rightarrow ny \in (B : a).

Thus (B: a) is N-subgroup of N.

Now $B \leq_e E$, Let K be nonzero N-subgroup of N.

Since $a \in E$, Ka is N-subgroup of E.

 $Ka = (0) \Longrightarrow ka = 0 \in B, \forall k (\neq 0) \in K$

 \Rightarrow k \in K \cap (B : a)

 $\Rightarrow K \cap (B:a) \neq 0$

$$Ka \neq (0) \implies Ka \cap B \neq 0$$

Let $k_1 a (\neq 0) \in B$, for $k_1 \in K$.

Then $k_1 \in (B:a) \Longrightarrow k_1 \in K \cap (B:a)$

If $k_1 = 0$, $k_1 a = 0$, a contradiction.

So $k_1 \neq 0$, which gives $K \cap (B:a) \neq 0$.

Thus $(B:a) \leq_e N \Longrightarrow (B:a) \in \chi$.

Corollary 2.1.8: If $B \in \chi$ and $a \in N$ then $(B : a) \in \chi$.

Definition 2.1.9: χ -torsion of N-group E is the subset { $e \in E / Ie = 0$ for some N-subgroup I of χ } and is denoted by $T_{\chi}(E)$.

Definition 2.1.10: If $T_{\chi}(E) = E$, E is called χ -torsion N-group.

Example 2.1.11: $N = Z_8$ is the set with two operations '+' as addition modulo 8 and '.' defined by following table. Then $(Z_8, +, .)$ is a near-ring.

•	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1					0		0	
2	0	0	0	0	0	0	0	0
3					0			4
	0	0	0	0	0	0	0	0
5	0	4	0	4	0	4	0	4
6	0	0	0	0	0	0	0	0
7	0	4	0	4	0	4	0	4

Here I = $\{0, 2, 4, 6\} \in \chi$ and Ie = 0, for e = 0, 1, 2, 3, 4, 5, 6, 7. So $T_{\chi}(E) = E$, E is χ -torsion N-group.

Definition 2.1.12: If $T_{\chi}(E) = 0$, E is called χ -torsion free N-group.

Example 2.1.13: $N = Z_8$ is the set with two operations '+' as addition modulo 8 and '.' defined by following table. Then $(Z_8, +, .)$ is a near-ring.

•						5		
0	0	0	0	0	0	0 1 2 3 4 5	0	0
1	0	1	1	1	1	1	1	1
2	0	2	2	2	2	2	2	2
3	0	3	3	3	3	3	3	3
4	0	4	4	4	4	4	4	4
5	0	5	5	5	5	5	5	5
6	0	6	` 6	6	6	6	6	6
7	0	7	7	7	7	7	7	7

Here I = N $\in \chi$ and Ie = 0, for e = 0. So $T_{\chi}(E) = 0$, E is χ -torsion free N-group.

Proposition 2.1.14: If proper essential N-subgroups of N are distributively generated, then $T_{\chi}(E)$ N-subgroup of E.

Proof: Let $e_1, e_2 \in T_{\chi}(E) \implies \exists I_1, I_2 \in \chi$ such that $I_1e_1 = 0, I_2e_2 = 0$.

Now $I_1 \cap I_2 \in \chi$ and $(I_1 \cap I_2)e_1 = 0$, $(I_1 \cap I_2)e_2 = 0$.

Since $(I_1 \cap I_2)$ is distributively generated, $(I_1 \cap I_2)(e_1 - e_2) = 0$.

So $e_1 - e_2 \in T_{\chi}(E)$.

Again let $e \in T_{\chi}(E)$, so Ie = 0 for $I \in \chi$.

To show for $a \in N$, $ae \in T_{\chi}(E)$.

Now for $I \in \chi$, $(I : a) \in \chi$, for $a \in N$.

Let $z \in (I : a)$ then $za \in I$.

We get (za)e = 0 [since Ie = 0]

$$\Rightarrow$$
 z(ae) = 0

So, $(I:a) \in \chi$ such that $z \in (I:a)$ and $ae \in T_{\chi}(E)$.

Thus $T_{\chi}(E)$ is N-subgroup of E.

Definition 2.1.15: χ -closure of M in E is the subset $\{e \in E \mid Ie \subseteq M, \text{ for some N-subgroup I of } \chi\}$ and we denote it by $Cl_{\chi}^{E}(M)$ or simply $Cl_{\chi}(M)$.

So M is χ -closed if $Cl_{\chi}^{E}(M) = M$.

Note 2.1.16: (i) Let M be an N-subgroup of E. Then $M \subseteq Cl_{\chi}^{E}(M)$.

[Since $\operatorname{Cl}_{\chi}^{E}(M) = \{ x \in E / \exists I \in \chi \text{ s.t. } Ix \subseteq M \}$ and M N-subgroup of E. (ii) If $M_{1} \subseteq M_{2}$ are N-subgroups of E, then $\operatorname{Cl}_{\chi}^{E}(M_{1}) \subseteq \operatorname{Cl}_{\chi}^{E}(M_{2})$ for $M_{1}, M_{2} \subseteq E$. [Obvious from definition]

Example 2.1.17: In example 2.1.11, $M = \{0, 2, 4, 6\}$ N-subgroup of _NN. $I = \{0, 4\} \in \chi$. Now $Ie \subseteq M$ for all $e \in N$. So $Cl_{\chi}^{N}(M) = {}_{N}N$.

Definition 2.1.18: The set of torsion elements of E, $T_N(E) = \{ e \in E / (0,e) \neq 0 \}$

Definition 2.1.19: If $T_N(E) = E$, E is called torsion N-group.

Example 2.1.20: $N = \{0, a, b, c\}$ is the Klein's four group with multiplication

	0	a	b	с
0	0	0	0	0
а	a	a	а	a
b	0	0	0	0
С	a	a	a	а

Then (N, +, .) is a near-ring. In $_NN$, $T_N(_NN) = _NN$. So $_NN$ is torsion N-group.

Definition 2.1.21: If $T_N(E) = 0$, E is called torsion-free N-group.

Example 2.1.22: $N = \{0, a, b, c\}$ is the Klein's four group with multiplication

	0	а	b	c
0	0	0	0	0.
a	а	a	а	a
b	b	b	b	b
C	с	с	с	с

Then (N, +, .) is a near-ring. In _NN, $T_N(N) = 0$. So _NN is torsion-free N-group.

Definition 2.1.23: An N-subgroup (ideal) M is called super-honest in E if $x \in E \setminus M$ for n $\in N$, $nx \in M \Rightarrow n = 0$.

If B is an N-subgroup (ideal) of N then B is called a super-honest N-subgroup (ideal) of N if B is super-honest N-subgroup (ideal) of N considered N as N-group $_{N}N$.

Example 2.1.24: Superhonest N-subgroups:

Here N = $\{0, 1, 2, 3, 4, 5\}$, N₂ = $\{0, 1\}$, N₃ = $\{0, 1, 2\}$ are near-rings under the operation '+' as addition module 6, modulo 2, modulo 3 respectively and the multiplication '*' defined as

*				3.		
- 0	0	0	0	0 1 2 3 4 5	0	0
1	0	1	1	1	1	1
2	0	2	2	2	2	2
3	0	3	3	3	3	3
4	0	4	4	4	4	4
5	0	5	5	5	5	5

Now $N_2 \oplus N_3 \oplus N$ is a group.

We define the map $N \times (N_2 \oplus N_3 \oplus N) \rightarrow N_2 \oplus N_3 \oplus N$

by $n(a,b,c) = (n^*a, n^*b, n^*c)$ for all $n \in N$, $(a, b, c) \in N_2 \oplus N_3 \oplus N$,

where $n^*a \in N_2$ and $n^*b \in N_3$.

Then $N_2 \oplus N_3 \oplus N$ is an N-group.

Now $N_2 \oplus N_3$ is an N-subgroup of $N_2 \oplus N_3 \oplus N$.

For $(a_1, b_1, c_1) \in (N_2 \oplus N_3 \oplus N) - (N_2 \oplus N_3)$ implies $c_1 \neq 0$.

If for some $n \in N$, $n(a_1, b_1, c_1) \in (N_2 \oplus N_3)$

 $\Rightarrow (n^*a_1, n^*b_1, n^*c_1) \in (N_2 \oplus N_3)$

 $\Rightarrow (n^*a_1, n^*b_1, n) \in (N_2 \oplus N_3) \text{ [since } c_1 \neq 0]$

 \Rightarrow n = 0.

So $N_2 \oplus N_3$ is a superhonest N-subgroup of $N_2 \oplus N_3 \oplus N$.

Definitions 2.1.25: An N-subgroup M of E is called essentially closed if whenever C is an N-subgroup of E such that $M \subseteq C$ then C = M.

An N-subgroup M of E is called weakly essentially closed if whenever C is an N-subgroup of E such that such that $M \subseteq_{we} C$ then C = M.

2.2 CHARACTERSTICS OF χ - HONEST N-SUBGROUPS:

In this section we characterize χ -honest N-subgroups using the concepts like χ -closed, χ -torsion.

Lemma 2.2.1: Let $H \subseteq M \subseteq E$ be N-subgroups, then the following statements hold.

(a) If H is χ -honest in M and M is χ -honest in E then H is χ -honest in E.

(b) If M is χ -honest in E if and only if M/H is χ -honest in E/H, where H is ideal of E.

(c) If H is ideal of E and H, M/H are χ -honest in E/H, then M is χ -honest in E.

Proof: (a) Let $e \in E$, $I \in \chi$ be such that $Ie(\neq 0) \subseteq H$, then $Ie \subseteq M$ [since $H \subseteq M$] hence $e \in M$ as M is χ -honest in E.

But $e \in M$, $Ie \subseteq H \implies e \in H$ as H is χ -honest in M. So $e \in E$, $I \in \chi$ such that $Ie \subseteq H \implies e \in H$ gives H is χ -honest in E.

(b) Let $e \in E$, $I \in \chi$ be such that $I(e + H) \neq 0 \subseteq M/_{H}$, then $Ie \neq 0 \subseteq M$. Hence $e \in M$,

We get $e + H \in M/_H$. So M/ H is χ -honest in E/H.

(c) Let $e \in E$, $I \in \chi$ be such that $Ie (\neq 0) \subseteq M$. If $Ie \subseteq H$ then $e \in H \subseteq M$. If $Ie \not\subseteq H$, then

$$(0 \neq)$$
I(e + H) $\in \frac{M}{H}$, hence (e+ H) $\in \frac{M}{H}$ and we get $e \in M$.

Similarly we get the same properties for χ -closed N-subgroups also.

Lemma 2.2.2: Let $\{M_{\lambda} : \lambda \in \Lambda\}$ be a family of χ -honest N-subgroups of E, then $\cap_{\lambda} M_{\lambda}$ is χ -honest.

Proof: Let $e \in E$, $I \in \chi$ be such that $Ie(\neq 0) \subseteq \cap_{\lambda} M_{\lambda}$, $\therefore Ie \subseteq M_{\lambda}$, $\forall \lambda$

 $\Rightarrow e \in M_{\lambda} [:: M_{\lambda} \ \chi \text{ closed}] \ \forall \lambda$

$$\Rightarrow e \in \cap_{\lambda} M_{\lambda}$$

Similarly we get the lemma for χ -closed N-subgroups also.

Lemma 2.2.3: If proper essential N-subgroups of N are distributively generated then for any left N-group E and any N-subgroup $M \subseteq E$ we have $Cl_{\chi}^{E}(M)$ is an N-subgroup of E.

<u>Proof:</u> Let $X_1, X_2 \in Cl^E_{\chi}(M)$, then there exist $I_1, I_2 \in \chi$ such that $I_iX_1 \subseteq M$ for i=1,2.

Since $I_1 \cap I_2 \in \chi$ and $I_1 \cap I_2$ is distributively generated.

So, $(I_1 \cap I_2)(X_1 + X_2) \subseteq M$.

Then $X_1 + X_2 \in Cl^E_{\chi}(M)$

Let $x \in Cl_{\chi}^{E}(M)$ and $n \in N$, then there exist $I \in \chi$ such that $Ix \subseteq M$.

since $I \in \chi$, we have $J = (I : n) \in \chi$ i.e. $Jn \subseteq I$.

So we have $Jnx \subseteq Ix \subseteq M$, hence $nx \in Cl_{\chi}^{E}(M)$.

Thus Cl_{χ}^{E} (M) is an N-subgroup of E.

Lemma 2.2.4: $\operatorname{Cl}_{\chi}^{E}(M_{1}) \cap \operatorname{Cl}_{\chi}^{E}(M_{2}) = \operatorname{Cl}_{\chi}^{E}(M_{1} \cap M_{2})$ for any N-subgroups $M_{1}, M_{2} \subseteq E$ and N-group E.

<u>Proof</u>: We always have $Cl_{\chi}^{E}(M_{1} \cap M_{2}) \subseteq Cl_{\chi}^{E}(M_{1}) \cap Cl_{\chi}^{E}(M_{2})$

 $\therefore x \in \operatorname{Cl}_{\chi}^{E}(M_{1} \cap M_{2}) \Longrightarrow \exists I \in \chi \text{ such that } Ix \subseteq M_{1} \cap M_{2} \text{ i.e. } Ix \subseteq M_{1}, Ix \subseteq M_{2}$

 $\text{i.e. } x \in \ \text{Cl}^E_{\chi} (M_1), x \in \text{Cl}^E_{\chi} (M_2) \Longrightarrow x \in \ \text{Cl}^E_{\chi} (M_1) \cap \text{Cl}^E_{\chi} (M_2) \,.$

Otherwise if $x \in Cl^{E}_{\chi}(M_{1}) \cap Cl^{E}_{\chi}(M_{2})$, there exists $I_{1}, I_{2} \in \chi$, such that $I_{i}x \subseteq M_{i}$

then $I_1 \cap I_2 \in \chi$ hence $I_1 \cap I_2, x \subseteq M_1 \cap M_2$ and $x \in Cl_{\chi}^E(M_1 \cap M_2)$.

Definition 2.2.5: The set χ of essential N-subgroup is called linear filter if $I \subseteq N$ and $J \in \chi$ satisfy $(I : y) \in \chi$ for any $y \in J$, then $I \in \chi$. It is denoted by \mathcal{L} .

Proposition 2.2.6: Let \mathcal{L} be the set of essential N-subgroups, then the following statements are equivalent:

- (a) \mathcal{L} is a linear filter.
- (b) $Cl_{\mathcal{L}}^{E}Cl_{\mathcal{L}}^{E} = Cl_{\mathcal{L}}^{E}$ for any N-group E.

Proof: (a) \Rightarrow (b): If $M \subseteq E$ is an N-subgroup and $x \in Cl_{\mathcal{L}}^{E}Cl_{\mathcal{L}}^{E}(M)$, $\exists I \in \mathcal{L}$ such that Ix $\subseteq Cl_{\mathcal{L}}^{E}(M)$, then to any $y \in I \exists I_{y} \in \mathcal{L}$ such that $I_{y}yx \subseteq M$, $I_{y}y \subseteq (M : x)$ i.e. for any $I_{y}yx$ $\subseteq M$, hence ((M : x) : Y) belongs to \mathcal{L} , therefore (M : x) $\in \mathcal{L}$ as \mathcal{L} is a linear filter.

 $\Rightarrow \mathbf{x} \in \mathrm{Cl}^E_{\mathcal{L}}\mathrm{M}) \implies \mathcal{Cl}^E_{\mathcal{L}}\mathrm{Cl}^E_{\mathcal{L}}\mathrm{M}) \subseteq \mathrm{Cl}^E_{\mathcal{L}}(\mathrm{M})$

 $\operatorname{Cl}_{\mathcal{L}}^{E}(M) \subseteq Cl_{\mathcal{L}}^{E}\operatorname{Cl}_{\mathcal{L}}^{E}(M)$ is obvious by definition of χ -closure.

Thus $\operatorname{Cl}_{\mathcal{L}}^{E} M$ = $Cl_{\mathcal{L}}^{E} \operatorname{Cl}_{\mathcal{L}}^{E} (M)$.

(b) \Rightarrow (a): Let $J \in \mathcal{L}$ and $I \subseteq N$ be such that for any $y \in J$ the N-subgroup $(I : y) \in \mathcal{L}$,

Hence N =
$$\operatorname{Cl}_{\mathcal{L}}^{E}(J) \subseteq \operatorname{Cl}_{\mathcal{L}}^{E}\operatorname{Cl}_{\mathcal{L}}^{E}(I) = \operatorname{Cl}_{\mathcal{L}}^{E}(I)$$

 $:: \operatorname{Cl}_{\mathcal{L}}^{E}(\operatorname{I}) = \operatorname{N} \text{ and we have } \operatorname{I} \in \mathcal{L}.$

Lemma 2.2.7: Let $M \subseteq E$ be an N-subgroup then the following statements are equivalent:

- a. M is χ -honest in E.
- b. For $m \in (Cl^{E}_{\chi}(M) \setminus M \text{ we have } (M : m) = Ann (m)$
- c. For $m \in (Cl_{\chi}^{E}(M) \setminus M$ we have $Nm \cap M = 0$

Proof: (b) \Rightarrow (c) Let for some $x \in (Cl^E_{\chi}(M) \setminus M, (M : x) = Ann (x)$

To show $Nx \cap M = 0$

Let $P (\neq 0) \in Nx \cap M \Rightarrow P \in Nx$ and $P \in M$

 \Rightarrow P = nx for some n \in N and P \in M

i.e. $nx \in M$. i.e. $n \in (M : x)$

But (M : x) = Ann (x).

 \therefore n \in Ann(x) \implies nx = 0 \Rightarrow P = 0, a contradiction.

(c) \Rightarrow (a) For any $x \in (Cl_{\chi}^{E}(M) \setminus M \text{ and } Nx \cap M = 0$, to show M is χ -honest in E.

Let for some $I \in \chi$ and $e \in E$. $0 \neq Ie \subseteq M$ to show $e \in M$.

If possible $e \notin M$. But $e \in Cl_{\chi}^{E}(M)$

 \therefore Ne \cap M = 0 \Rightarrow Ie \cap M = 0. Which is a contradiction, since Ie \subseteq M.

 $\therefore e \in M \Rightarrow M$ is χ -honest in E.

(a) \Rightarrow (b) Let $x \in (Cl_{\chi}^{E}(M) \setminus M.$

Then there exists $I \in \chi$ with $Ix \subseteq M$, then Ix = 0 [: M is honest in E, $x \notin M$]

Hence $I \subseteq Ann(x) \subseteq (M : x)$, therefore $(M : x) \in \chi$.

Hence (M : x) = Ann (x).

Lemma 2.2.8: Let $M \subseteq E$ be an χ -honest N- subgroup, then $Cl_{\chi}^{E}(M) = M \cup T_{\chi}(E)$

Proof: Let $x \in Cl^{E}_{\chi}(M)$

 $:: M \subseteq Cl^{E}_{\chi}(M), :: \text{ if } x \in M \text{ done.}$

If $x \notin M$ as $x \in Cl^{E}_{\chi}(M)$, $\exists I \in \chi$ such that $0 = Ix \subseteq M$ [: M is χ -honest in E]

 $\Rightarrow x \in T_{\chi}(E) \Rightarrow x \in M \cup T_{\chi}(E)$

Conversely let $x \in M \cup T_{\chi}(E)$

 \Rightarrow if $x \in M$ then $x \in Cl^{E}_{\chi}(M)$ obvious.

 $x \in T_{\chi}(E) \Longrightarrow \exists I \in \chi \text{ such that } Ix = 0 \in M \Longrightarrow x \in Cl_{\chi}^{E}(M)$

 $:: \operatorname{Cl}_{\chi}^{\operatorname{E}}(\operatorname{M}) = M \cup T_{\chi}(\operatorname{E})$

Corollary 2.2.9: Let $M \subseteq E$ be an N-subgroup such that $T_{\chi}(E) \subseteq M$, then $M \subseteq E$ is χ -

honest N-subgroup if and only if it is χ -closed.

In particular, if E is χ - torsion free then an N subgroup M \subseteq E is χ -honest if and only if it is χ - closed.

Proof: By lemma 2.2.8 if $M \subseteq E$ is χ -honest then $Cl_{\chi}^{E}(M) = M \cup T_{\chi}(E) = M$ [as $T_{\chi}(E) \subseteq M$]

 \therefore M is χ -closed.

Conversely, M is χ -closed $\Rightarrow \chi$ honest obvious.

In particular E is χ – torsion free \Longrightarrow $T_{\chi}(E) = 0$

So $M \subseteq E$ is χ -honest $\Longrightarrow \operatorname{Cl}_{\chi}^{E}(M) = M \cup T_{\chi}(E) = M$.

Thus M is χ -closed in E.

Corollary 2.2.10: Let \mathcal{L} be a linear filter, then for any N-group E the torsion N-subgroup $T_{\mathcal{L}}(E)$ is \mathcal{L} -honest.

Proof: Since \mathcal{L} is a linear filter then $T_{\mathcal{L}}(E)$ is a \mathcal{L} -closed N-subgroup, hence \mathcal{L} -honest.

 $[:: T_{\mathcal{L}}(E) = Cl_{\mathcal{L}}^{E}(0)].$

: \mathcal{L} -linear gives $Cl_{\mathcal{L}}^{E}Cl_{\mathcal{L}}^{E}(0) = Cl_{\mathcal{L}}^{E}(0)$ which gives $Cl_{\mathcal{L}}^{E}(0)$ is \mathcal{L} -closed.

i.e. $T_{\mathcal{L}}(E)$ is \mathcal{L} -honest.

Remark 2.2.11: \mathcal{L} is a linear filter if and only if $T_{\mathcal{L}}(E) \subseteq E$ is \mathcal{L} -closed for any N-group E if and only if $T_{\mathcal{L}}(E) \subseteq E$ is \mathcal{L} -honest for any N-group E.

Corollary 2.2.12: Any χ -honest N-subgroup $M \subseteq E$ satisfies either $M \subseteq T_{\chi}(E)$ or $T_{\chi}(E) \subseteq M$, if proper essential N-subgroups of N are distributively generated.

Proof: Since M is χ -honest in E. So $Cl_{\chi}^{E}(M) = M \cup T_{\chi}(E)$.

 $Cl_{\chi}^{E}(M) \& T_{\chi}(E)$ are subgroups.

Hence either M is included in $T_{\chi}(E)$ or $T_{\chi}(E)$ is included in M, as union of two subgroups is subgroup if one contain the other.

Note 2.2.13: If \mathcal{L} is a linear filter and M is \mathcal{L} -honest in $T_{\mathcal{L}}(E)$, then M is \mathcal{L} -honest in E.

:: \mathcal{L} linear filter \implies T_L(E) is \mathcal{L} -honest.

 \therefore M is \mathcal{L} -honest in $T_{\mathcal{L}}(E)$ and $T_{\mathcal{L}}(E)$ is \mathcal{L} -honest in $E \Longrightarrow$ M is \mathcal{L} -honest in E.

Corollary 2.2.14: $(\neq 0)$ M \subseteq E is χ -honest and if M is χ -torsion free then E is χ -torsion free and $(\neq 0)$ M \subseteq E is χ -closed if proper essential N-subgroup of N is distributively generated.

Since $(\neq 0)$ M \subseteq E is χ -honest so by corollary 2.2.12 either M \subseteq T $_{\chi}(E)$ or T $_{\chi}(E) \subseteq$ M.

First to show $T_{\chi}(E) = 0$, if M is χ -torsion free.

Let $x \neq 0 \in T_{\chi}(E) \Longrightarrow \exists I \in \chi$ such that Ix = 0.

Now if $x \in M$, $Ix \neq 0$, $\forall I \in \chi$ [: M is χ -torsion free], a contradiction.

Again let $(\neq 0) x \notin M$, so we get $M \subseteq T_{\chi}(E)$

For this condition for any $y \in M \Longrightarrow y \in T_{\chi}(E)$

 \Rightarrow Jy = 0 for some J $\in \chi$.

But M is χ - torsionfree, a contradiction.

 $\therefore x = 0 \Longrightarrow E \text{ is } \chi \text{ -torsion free.}$

Next to show $M \subseteq E$ is χ -closed.

Let $x \in E$, $I \in \chi$ such that $Ix \subseteq M$.

Now E is χ -torsion-free, Ix $\neq 0$.

Again M is χ -honest in E, so Ix ($\neq 0$) $\subseteq M \Longrightarrow x \in M$

 \Rightarrow M \subseteq E is χ -closed.

2.3 CHARACTERSTICS OF SUPERHONEST N-SUBGROUPS:

This section contains some properties of superhonest N-subgroups. The concepts like essentially closed, torsion are used to discuss various characteristics of superhonest N-subgroups. We also attempt to find some relation of χ -honest and superhonest N-subgroups.

Lemma 2. 3.1: Let M be an N-subgroup (ideal) of E. Then M is a super-honest N-subgroup (ideal) of E if and only if for each $a \in E$, (M : a) is a super-honest N-subgroup (ideal) of N.

Proof: Let M be a super-honest N-subgroup of E.

If $n \in N$ is such that $n \notin (M : a)$ with $n'n \in (M : a)$ for some $n' \in N$ then $n' n a \in M$.

Since M is a super-honest N-subgroup of E, we have n' = 0.

Hence (M : a) is a super-honest N-subgroup of N.

Conversely let (M: a) be a super-honest N-subgroup of N.

If $a \in E$ is such that $a \notin M$ with $na \in M$ for some $n \in N$ then $1 \notin (M : a)$.

This implies $n \cdot 1 = n \in (M : a)$.

Since (M : a) is a super-honest N-subgroup of N, so n=0.

Hence M is a super-honest N-subgroup of E.

Lemma 2. 3.2: Let M be an N-subgroup (ideal) of E. Then M is a super-honest N-subgroup (ideal) of E if and only if (M: a) = 0 for each $a \in E - M$.

Proof: Let M be a super-honest N-subgroup (ideal) in E. Then for each $x \in E-M$, $n \in N$, $nx \in M$ implies n = 0, this gives (M: x) = 0, for each $x \in E-M$.

On the other hand let (M: x) = 0 for each $x \in E - M$.

If for some $n \in N$, $nx \in M$ then $n \in (M : x)$.

This implies n = 0. This gives M is super-honest in E.

Lemma 2.3.3: {0} is a super-honest N-subgroup of N if and only if N has no left zero divisors.

Proof: If N has no left zero divisors then {0} is super-honest N-subgroup (ideal) of N.

[Since $n \in N$, $x \in N-0$, nx = 0 implies n = 0]

Let {0} be a super-honest N-subgroup of N. If $n \neq 0 \in \mathbb{N}$ satisfying n'n = 0 for some $n' \in \mathbb{N}$ then n' = 0. Thus N has no left zero divisors.

(

*	0	1	2	3 0 1 2 3 4 5	4	5
0	0.	0 ·	0	0	0	0
1	0	1	1	1	1	1
2	0	2	2	2	2	2
3	0	3	3	3	3	3
4.	0	4	4	4	4	4
5	0	5	5	5	5	5

Example 2.3.4: Z_6 is a near-ring under the operation '+' as addition module 6 and the multiplication '*' defined as the following table:

Here $\{0\}$ is superhonest N-subgroup of Z₆. Z₆ has no zero divisors.

Lemma 2.3.5: N-group E has a proper super-honest N-subgroup (ideal) M, then N has to has no left zero divisors.

ł

Proof: M is super-honest N-subgroup (ideal) in E

 \Leftrightarrow (M : a) = 0 for a \in E – M [by lemma 2.3.2]

 $\Leftrightarrow 0 = (M:a)$ is super-honest N-subgroup (ideal) of N for $a \in E - M$ [by lemma 2.3.1]

 \Leftrightarrow N has no left zero divisors, where M is proper super-honest N-subgroup (ideal) of E.

Lemma 2.3.6: Let M be an N-subgroup of E. If M is a complement N-subgroup of some

N-subgroup of E then M an essentially closed N-subgroup of E.

Proof: Suppose M is a complement N-subgroup of an N-subgroup C of E.

If there exists an N-subgroup D of E such that $M \subset D$ and M is an essential N-subgroup of D, then $D \cap C$ is a non zero N- subgroup of D.

But $(D \cap C) \cap M \subset C \cap M = 0$, a contradiction to the fact that M is an essential N-subgroup of D.

So M is an essentially closed N-subgroup of E.

Lemma 2.3.7: If M is an weakly essentially closed N-subgroup of E then M is a complement N-subgroup of M^c in E.

Proof: Suppose there exists an N-subgroup D of E such that $D \supset M$ and $D \cap M^c = 0$.

By given condition M is not weakly essential N-subgroup of D and so there exist a non zero ideal D' of D such that $D' \cap M = 0$.

Then $D \cap (M^c + D') = D' + (M^c \cap D) = D'$.

Now $M \cap D' = M \cap D \cap (M^c + D')$

 $\Rightarrow 0 = M \cap (M^{c} + D').$

Therefore $M \cap (M^c + D') = 0$, which contradicts to the fact that M^c is a complement N-subgroup of M in E. So M is a complement N-subgroup of M^c in E.

Although every weakly essential N-subgroup is not essential, for some near-rings and N-groups every weakly essential N-subgroup is essential.

Example 2.3.8: If P is a division near ring, Z is the ring of integers then P X Z is a near ring with respect to componentwise addition & multiplication then every weakly essential P X Z subgroup of P X Z is essential.

*							6	
0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7
2	0	2	4	6	0	2	4 2 0 6 4	6
3	0	3	6	1	4	7	2	5
4	0	4	0	4	0	4	0	4
5	0	5	2	7	4	1	6	3
6	0	6	4	2	0	6	4	2
7	0	7	6 (5	4	3	2	
	l							

 $N = \{0, 1, 2, 3, 4, 5, 6, 7\}$ is a near-ring under addition modulo 8 and multiplication defined as follows:

Clearly, every weakly essential N-subgroup of N is essential.

If so we get the following:

From lemma 2.3.6 and lemma 2.3.7 we get the following:

Lemma 2.3.9 : If M is an N-subgroup of E and M^c is a complement N-subgroup of B in E, then the following statements are equivalent.

- (i) M is essentially closed N-subgroup of E.
- (ii) M is a complement N- subgroup of M^c in E
- (iii) M is a complement N- subgroup of some N-subgroup of E.

Lemma 2.3.10: If M is an N-subgroup of E such that $T_{\chi}(E) \subseteq M$, then M is an essential N-subgroup of $Cl_{\chi}(M)$.

Proof: Let A be N-subgroup of $Cl_{\gamma}(M)$. We assume $A \cap M = 0$.

Let $m \in A$, then $m \in Cl_{\chi}(M)$ implies $Im \subseteq M$, for some essential N-subgroup I of χ .

Also Im \subseteq A implies Im \subseteq M \cap A = 0.

This gives Im = 0.

ι -

Thus $m \in T_{\chi}(E) \subseteq M$. So, $m \in A \cap M$.

 \therefore m = 0. This gives A=0.

Thus M is an essential N-subgroup of $Cl_{\gamma}(M)$.

If M is a essentially closed N-subgroup (ideal) of E such that $T_{\chi}(E) \subseteq M$, then by above we get $M = Cl_{\chi}(M)$. On the other hand if M is an χ -closed N-subgroup (ideal) of E then M is essentially closed N-subgroup of E and $T_{\chi}(E) \subseteq M$. For if M is an essential Nsubgroup of C where C is N-subgroup of E then for each $x \in C$, (M : x) is an essential Nsubgroup of N, so belongs to χ , then $x \in Cl_{\chi}(M) = M$. Hence C = M. Thus M is a essentially closed N-subgroup of E. Hence we get the following lemma:

Lemma 2.3.11 : Let M be an N-subgroup of E. Then M is essentially closed N-subgroup of E satisfying $T_{\chi}(E) \subseteq M$ if and only if $Cl_{\chi}(M) = M$.

Corollary 2.3.12: If every weakly essential N-subgroup is essential in E then (1) M is essentially closed & $T_{\chi}(E) \subseteq M$, (2) M is a complement N-subgroup of M^c & $T_{\chi}(E) \subseteq M$,

(3) M is a complement N-subgroup of some N-subgroup of E & $T_{\chi}(E) \subseteq M$ (4) M is χ -closed are equivalent.

Lemma 2.3.13 : If M is an ideal of an N-group E then M is super-honest in E if and only if M is essentially closed in E, $T_{\chi}(E) \subseteq M$ and $T_{\chi}(E/M) \supseteq T_{N}(E/M)$.

1

Proof: Let C be an N-subgroup of E such that $M \subseteq_e C$. Then there exists $a \in C - M$ such that Na is a non zero N-subgroup of C. Since Na $\cap M \neq 0$, so $(M : a) \neq 0$, this contradicts that M is a super-honest N-subgroup of E. Thus M = C. Thus M is essentially closed. Again $a \in T_N(E) \Rightarrow (0 : a) \neq 0$

 \Rightarrow x ($\neq 0$) \in (0 : a) so xa = 0.

If $a \in M$ then it is done.

If $a \notin M$ i.e. $a \in E \setminus M$ then x = 0 [: M is super-honest in E].

Hence contradiction to $x \neq 0$. So $a \in M$.

Thus $T_N(E) \subseteq M$. And so $T_{\chi}(E) \subseteq M$, because $T_{\chi}(E) \subseteq T_N(E)$.

Now $T_N(E/M) = \overline{0}$. Since $T_N(E) = \{a \in E / (0 : a) \neq 0\}$.

So $T_N (E / M) = \{\overline{a} \in E / M : (\overline{0}; \overline{a}) \neq 0\}.$

Let $\overline{a} \in T_N$ (E /M), $a \notin M \Longrightarrow (\overline{0}; \overline{a}) \neq 0$

 $\Rightarrow \exists x \neq 0$ such that $x \in (\overline{0}; \overline{a})$

$$\Rightarrow$$
 x $\overline{a} = \overline{0}$

 \Rightarrow xa + M = M \Rightarrow xa \in M where a \notin M

 \Rightarrow x = 0, \therefore M is super-honest in E.

Therefore $\forall a \in E \setminus M$, $(\overline{0}: \overline{a}) = 0$ and so $T_N(E/M) = \overline{0} = M$.

 \therefore $T_{\chi}(E/M) \supseteq T_{N}(E/M)$ holds trivially.

Conversely let $a \in E \setminus M$ with $na \in M$ for some $n \in N$.

If $n \neq 0$, then $\overline{a} = a + M \in T_N (E / M)$.

 $[:: n\overline{a} = na + M \in M = \overline{0} \Longrightarrow n \in (\overline{0}: \overline{a}) \Longrightarrow \overline{a} \in T_N(E/M)].$

So $\overline{a} \in T_{\chi}(E/M)$. Thus $(\overline{0} : \overline{a}) = (M : a)$ belongs to χ .

So $a \in Cl_{\chi}(M) = M$, a contradiction [by lemma 2.3.11].

Proposition2.3.14: Let M be an ideal of an N-group E. If M is χ -closed in E and $T_{\chi}(E/M)$ $\supseteq T_N(E/M)$ then M is complement N-subgroup of some torsion-free N-subgroup of E.

Proof: M is χ -closed N-subgroup of E \Longrightarrow M essentially closed N-subgroup of E.

So by Lemma 2.3.7 M is complement ideal of M^c in E[since essentially closed implies weakly essentially closed is obvious], where M^c is a complement of M in E.

It remains to show M^c is a torsion-free N-subgroup of E.

Suppose there exists $0 \neq a \in M^c$ such that na = 0 for some $0 \neq n \in N$.

Then $\overline{a} = a + M \in T_N$ (E /M) and so $\overline{a} \in T_{\chi}(E/M)$, which implies that $(\overline{0} : \overline{a}) = (M : a)$ belongs to χ .

Thus $a \in Cl_{\chi}(M) = M$. But then $a \in M \cap M^{c} = 0$, contradiction to $0 \neq a$.

Therefore M^c is torsion-free N -subgroup of E.

Corollary2.3.15: If M is an ideal of an N-group E and every weakly essential N-subgroup of E is essential then (1) M is super-honest in E (2) M is complement N-subgroup of some torsion-free N-subgroup of E and $T_{\chi}(E) \subseteq M$ and $T_{\chi}(E/M) \supseteq T_{N}(E/M)$ (3) M is χ -closed and $T_{\chi}(E/M) \supseteq T_{N}(E/M)$ (4) M is an essentially closed in E, $T_{\chi}(E) \subseteq M$ and $T_{\chi}(E/M) \supseteq$ $T_{N}(E/M)$ are equivalent.

Corollary 2.3.16: Since $T_{\chi}(E/M) \subseteq T_N(E/M)$ is obvious, we have $T_{\chi}(E/M) \supseteq T_N(E/M)$ if and only if $T_{\chi}(E/M) = T_N(E/M)$. Again $T_{\chi}(E/M) \supseteq T_N(E/M)$ if and only if $(M : a) \neq 0$ for some $a \in E$, then (M : a) is an essential N-subgroup of N. If _NN is uniform i.e. intersection of two non-zero N-subgroups is non-zero then $T_{\chi}(E) = T_N(E)$ [$\because x \in T_N(E) \Rightarrow (0 : x) \neq 0$ \Rightarrow intersection of (0 : x) with nonzero N-subgroup is non-zero $\Rightarrow (0 : x)$ is essential in N \Rightarrow $x \in T_{\chi}(E)$].

Corollary 2.3.17: If _NN is uniform and if M is an ideal of an N-group E and every weakly essential N-subgroup of E is essential then (1) M is super-honest in E (2) M is complement N-subgroup of some torsion-free N-subgroup of E and $T_{\chi}(E) \subseteq M$ (3) M is χ -closed (4) M is an essentially closed in E, $T_{\chi}(E) \subseteq M$ are equivalent.

Note2.3.18: (1) It is clear that N-group E is a super-honest N-subgroup of E itself.

(2) Again Every super-honest N-subgroup contains $T_N(E)$.

[Let M is a super-honest N-subgroup of E. $x \in T_N(E) \Longrightarrow nx = 0, n \in N$.

If $x \in M$ it is done.

If $x \notin M$ i.e. $x \in E \setminus M$ then n = 0 as M is super-honest in E, a contradiction.

So $x \in M \Longrightarrow T_N(E) \subseteq M$]

r

(3) It is also clear that if E is torsion N-group, then E is the only super-honest N-subgroup of E. [Since E is torsion N-group $\Rightarrow T_N(E) = E$. If M is super-honest ideal of E, then M contains $T_N(E)$. \Rightarrow M contains E. So M = E]

Proposition 2.3.19: If for each $i \in I$, M_i is a super-honest N-subgroup (ideal) of N-group E, then $\cap M_i$, $i \in I$ is also a super-honest N-subgroup (ideal) of E.

Proof: Let $x \in E$, $x \notin \cap_{i \in I} M_i$, with $nx \in \cap_{i \in I} M_i$ for some $n \in N$.

Now let $x \in E$ and $x \notin M_i$ for some i at least and $nx \in M_i \forall i \in I$

 \implies n = 0 as M_i is super-honest in E

 $\implies \bigcap_{i \in I} M_i$ is super-honest N-subgroup of E.

The intersection of all super-honest N-subgroups (ideals) of E is the smallest superhonest N-subgroup (ideal) of E. We denote it by P. If $P \subsetneq E$, then E has proper superhonest N-subgroups, otherwise E is the only super-honest N-subgroup of E itself.

Lemma 2.3.20 : If E and E' are N groups, f is a N-homomorphism from E to E', then for each super-honest N-subgroup B' of E', $f^{-1}(B')$ is a super-honest N-subgroup of E.

Proof: Let $a \in E - f^{-1}(B')$ with $na \in f^{-1}(B')$ for some $n \in N$. Then $f(a) \in E' - B'$ and $nf(a) = f(na) \in B'$. Since B' is super-honest in E', it follows that n = 0. Hence $f^{-1}(B')$ super-honest in E.

Corollary 2.3.21: If P is the smallest super-honest N-subgroup of an N-group E, then for each N-endomorphism f of E, $f^{-1}(P) \supset P \supset f(P)$.

Proof: Since $f^{-1}(P)$ is a super-honest N-subgroup of E, $f^{-1}(P) \supset P$. Hence $P \supset f(P)$.

As the smallest super-honest N-subgroup P of an N-group E, we know $P \supset Cl_{\chi}(D)$, where D is the N-subgroup of E generated by $T_N(E)$.

Note 2.3.22: But if B is super-honest in E, then the following example shows that f(B) is not super-honest in E.

As example 2.1.24 if E is the N-group $Z_2 \oplus Z_3 \oplus Z_6$ of near-ring Z_6 then $P = Z_2 \oplus Z_3$ is superhonest in $Z_2 \oplus Z_3 \oplus Z_6$. So $\pi(P) = Z_2$ is not super-honest in E, where π is the projection from E onto Z_2 .

Proposition2.3.23: $T_{\chi} T_{\chi}(E) = \operatorname{Cl}_{\chi} T_{\chi}(E)$ is χ -closed N-subgroup of E.

Proof: For any two N-subgroups define a relation \sim s.t. $M_1 \sim M_2 \iff M_1 \cap X = 0$ if and only if $M_2 \cap X = 0$, for any N-subgroup X of E, M_1, M_2 N-subgroups of E. Then for an N-subgroup M of E if M ~ E then M is essential in E. In case E = N, M is essential Nsubgroup of N.

Now we prove (1) $\operatorname{Cl}_{\chi}(M) \sim M + \operatorname{Cl}_{\chi}(0)$

Let X be an N-subgroup of E such that $(M + Cl_{\chi}(0)) \cap X = 0$

Let $m \in Cl_{\chi}(M) \cap X$.

Now $m \in Cl_{\chi}(M) \Longrightarrow \exists A \in \chi$ such that $Am \subseteq M$ and $m \in X \Longrightarrow Am \subseteq X$

 $::Am \subseteq M \cap X = 0 \ [:: 0 = (M + Cl_{\chi}(0)) \cap X \supseteq M \cap X]$

 $\Rightarrow m \in \operatorname{Cl}_{\chi}(0) \text{ and } m \in X \Rightarrow m \in \operatorname{Cl}_{\chi}(0) \cap X = 0 \Rightarrow m = 0 \therefore \operatorname{Cl}_{\chi}(M) \cap X = 0.$

(2) $P \sim M \Longrightarrow P \subseteq Cl_{\chi}(M)$

Let $p \in P$. Consider $A = \{x \in N | xp \in M\} = (M : P)$ essential N-subgroup of N.

 $\therefore p \in Cl_{\chi}(M).$

Now $\operatorname{Cl}_{\chi}(M) \sim M + \operatorname{Cl}_{\chi}(0)$. In place of M considering $\operatorname{Cl}_{\chi}(M)$ we get $\operatorname{Cl}_{\chi}\operatorname{Cl}_{\chi}(M) \sim \operatorname{Cl}_{\chi}(M) + \operatorname{Cl}_{\chi}(0) = \operatorname{Cl}_{\chi}(M)$ i.e. $\operatorname{Cl}_{\chi}\operatorname{Cl}_{\chi}(M) \sim \operatorname{Cl}_{\chi}(M)$. Again $\operatorname{Cl}_{\chi}\operatorname{Cl}_{\chi}\operatorname{Cl}_{\chi}(M) \sim \operatorname{Cl}_{\chi}\operatorname{Cl}_{\chi}(M)$. i.e. $\operatorname{Cl}_{\chi}\operatorname{Cl}_{\chi}\operatorname{Cl}_{\chi}(M) \sim \operatorname{Cl}_{\chi}\operatorname{Cl}_{\chi}(M) \sim \operatorname{Cl}_{\chi}(M)$ i.e. $\operatorname{Cl}_{\chi}\operatorname{Cl}_{\chi}\operatorname{Cl}_{\chi}(M) \sim \operatorname{Cl}_{\chi}(M)$. So by (2), $\operatorname{Cl}_{\chi}\operatorname{Cl}_{\chi}\operatorname{Cl}_{\chi}(M) \subseteq \operatorname{Cl}_{\chi}\operatorname{Cl}_{\chi}(M)$. $\operatorname{Cl}_{\chi}\operatorname{Cl}_{\chi}\operatorname{Cl}_{\chi}(M) \supseteq \operatorname{Cl}_{\chi}\operatorname{Cl}_{\chi}(M)$ is obvious. $\therefore \operatorname{Cl}_{\chi}\operatorname{Cl}_{\chi}\operatorname{Cl}_{\chi}(M) = \operatorname{Cl}_{\chi}\operatorname{Cl}_{\chi}(M)$.i.e. $\operatorname{Cl}_{\chi}\operatorname{Cl}_{\chi}(M)$ is χ -closed.

In particular $\operatorname{Cl}_{\chi}\operatorname{Cl}_{\chi}(0) = T_{\chi} T_{\chi}(E) = \operatorname{Cl}_{\chi} T_{\chi}(E)$ is χ -closed.

Proposition 2.3.24: If _NN is uniform, for each N-group E, $T_N(E) = T_{\chi}(E)$ and then every χ -closed N-subgroup of E is super-honest in E. In particular $T_{\chi} T_{\chi}(E)$ is a super-honest N-subgroup of E.

Proof: If _NN is uniform, for each N-group E, $T_N(E) = T_{\chi}(E)$ by corollary 2.3.16. Then every χ -closed N-subgroup of E is super-honest in E by corollary 2.3.17. In particular $T_{\chi} T_{\chi}(E)$ is χ -closed N-subgroup of E, hence super-honest in E.

Proposition 2.3.25: If the N-group E has no proper super-honest N-subgroup, P'is the smallest super-honest N-subgroup of the N-group E', then for each N-homomorphism f from E into E', $f(E) \subset P'$.

Proof: By proposition 2.3.20. $f^{-1}(P')$ is a super-honest N-subgroup of E. But E has no proper super-honest N-subgroup and so $f^{-1}(P') = E$. Then $f(E) \subset P'$.

Corollary 2.3.26 : If the N-group E has no proper super-honest N-subgroup, E' is a torsionfree N-group then only N-homomorphism from E into E' is the zero homomorphism.

Proof: Since E' is torsionfree, 0 is the smallest super-honest N-subgroup of E'.

Note 2.3.27: If M is an ideal of an N-group E then M is super-honest N-subgroup of E implies M is χ -honest [by corollary 2.2.9 and lemma 2.3.13].

2.4 Some special types of χ -honest and superhonest N-groups:

In this section, considering χ as a set of essential N-subgroups, we study various characteristics of χ -honest and superhonest N-subgroups.

Throughout this section by χ we mean a non empty set of essential N-subgroups of near ring N.

It is to be noted that that Lemma2.2.1 and Lemma 2.2.2 .hold for this set χ .

Moreover if χ is closed under intersection we get proposition 2.1.14.

Definition 2.4.1: χ is called weak closed under intersection if for any $I_1, I_2 \in \chi$ there exists $J \in \chi$ such that $J \subseteq I_1 \cap I_2$.

Definitions 2.4.2: χ is left N-closed if for any $n \in N$ and any $I \in \chi$, there is $J \in \chi$ such that $J n \subseteq I$. Thus for any element $n \in N$ and any $I \in \chi$ we have $(I: n) \in \chi$

 χ is left E-closed if for any $a \in E$ and any N-subgroup B of E there is a $J \in \chi$ such that $J a \subseteq B$. Thus for any element $a \in E$ & any N-subgroup B of E we have $(B : a) \in \chi$

Lemma 2.4.3: If χ is weak closed under intersection and proper essential N-subgroups of N are distributively generated then for any N-group E and any N-subgroup M of E, $Cl_{\chi}^{E}(M)$ is a subgroup of E.

Proof: Let $X_1, X_2 \in Cl^E_{\chi}(M)$, then there exist $I_1, I_2 \in \chi$ such that $I_iX_i \subseteq M$ for I = 1, 2then $\exists J \in \chi$ such that $J(X_1 + X_2) \subseteq (I_1 \cap I_2) (X_1 + X_2) \subseteq M$, then $X_1 + X_2 \in Cl^E_{\chi}(M)$

Lemma 2.4.4: χ is weak closed under intersection if and only if $Cl_{\chi}^{E}(M_{1}) \cap Cl_{\chi}^{E}(M_{2}) = Cl_{\chi}^{E}(M_{1} \cap M_{2})$ for any N-subgroups M_{1} , M_{2} of N-group E.

<u>Proof:</u> We always have $Cl_{\chi}^{E}(M_{1} \cap M_{2}) \subseteq Cl_{\chi}^{E}(M_{1}) \cap Cl_{\chi}^{E}(M_{2})$, for

 $x \ \in \ Cl^E_\chi(M_1 \cap M_2) \Longrightarrow \ \exists \ I \in \ \chi \ \ \text{such that} \ Ix \subseteq M_1 \cap \ M_2 \Longrightarrow Ix \subseteq M_1 \text{, } Ix \ \subseteq M_2$

 $\Longrightarrow x \in \ \operatorname{Cl}^E_\chi(M_1), x \in \operatorname{Cl}^E_\chi(M_2) \ \Longrightarrow x \in \ \operatorname{Cl}^E_\chi(M_1) \cap \operatorname{Cl}^E_\chi(M_2) \,.$

Otherwise if $x \in Cl_{\chi}^{E}(M_{1}) \cap Cl_{\chi}^{E}(M_{2})$, there exists I_{1} , $I_{2} \in \chi$, such that $I_{i}x \subseteq M_{i}$ then there exists $J \in \chi$ such that $J \leq I_{1} \cap I_{2}$, hence $J_{x} \subseteq M_{1} \cap M_{2}$ and $Cl_{\chi}^{E}(M_{1} \cap M_{2})$.

Next let I_1 , $I_2 \in \chi$, then $1 \in Cl_{\chi}^N(I_i)$ and then $1 \in Cl_{\chi}^N(I_1) \cap Cl_{\chi}^N(I_2) = Cl_{\chi}^N(I_1 \cap I_2)$ hence there exist $J = J.1 \in \chi$ such that $J \subseteq I_1 \cap I_2 : \chi$ is weak closed under intersection.

Lemma 2.4.5: If χ is closed under intersection then χ is left N-closed if and only if $Cl_{\chi}^{E}(M)$ is a N-subgroup for any N-subgroup M \subseteq E and any left N-group E.

- **Proof:** Let $x \in Cl_{\chi}^{E}(M)$ and $n \in N$, then there exist $I \in \chi$ such that $Ix \subseteq M$, since there exist $J \in \chi$ such that $Jn \subseteq I$, we have $Jnx \subseteq Ix \subseteq M$, hence $nx \in Cl_{\chi}^{E}(M)$.
- Next let $I \in \chi$ and $n \in N$, then $Cl_{\chi}^{E}(I) = N$, hence $n \in Cl_{\chi}^{E}(I)$ and there is $J \in \chi$, such that $Jn \subseteq I$.

Definition2.4.6: χ is inductive if for any $I \in \chi$ and any left N-subgroup $J \supseteq I$, $J \in \chi$.

Definition2.4.7: A set of essential N-subgroups is called topological filter if it is closed under intersection , inductive and left closed.

Lemma2.4.8: Let χ be inductive, then the following statements are equivalent:

- (1) χ is a topological filter.
- (2) $Cl_{\chi}^{E}(M)$ is an N-subgroup for any N-subgroup $M \subseteq E$.

Proof: We only need to show the implication $(2) \Longrightarrow (1)$.

It is obvious that χ is weak closed under intersection and left closed as $Cl_{\chi}^{E}(M)$ is an N-subgroup for any N-subgroup $M \subseteq E$. Then χ is a topological filter because it is inductive, therefore it is closed under intersection.

Definition2.4.9: A topological filter is a linear filter whenever it satisfies: if $I \subseteq N$ and $J \in \mathcal{T}$ satisfy (I: y) $\in \mathcal{T}$ for any $y \in J$, then $I \in \mathcal{T}$.

Proposition2.4.10: Let T be a topological filter, then the following statements are equivalent:

- (c) \mathcal{T} is a linear filter.
- (d) $Cl_{\mathcal{T}}^{E}Cl_{\mathcal{T}}^{E} = Cl_{\mathcal{T}}^{E}$ for any N-group E.

Proof: (a) \Rightarrow (b) If $M \subseteq E$ is an ideal and $x \in Cl_{\mathcal{T}}^E Cl_{\mathcal{T}}^E(M)$, $\exists I \in \mathcal{T}$ such that $Ix \subseteq Cl_{\mathcal{T}}^E(M)$, then to any $y \in I \quad \exists I_y \in \mathcal{T}$ such that $I_y yx \subseteq M$, $I_y y \subseteq (M : x) \Rightarrow$ for any $I_y yx \subseteq M$, hence ((M : x) : Y) belongs to \mathcal{T} , therefore $(M : x) \in \mathcal{T}$ as \mathcal{T} is a linear filter

 \Rightarrow x $\in Cl_T^E(M)$

 $:: \operatorname{Cl}_{\mathcal{T}}^{E}\operatorname{Cl}_{\mathcal{T}}^{E}(M) \subseteq \operatorname{Cl}_{\mathcal{T}}^{E}(M)$

 $\operatorname{Cl}_{\mathcal{T}}^{E}(M) \subseteq \operatorname{Cl}_{\mathcal{T}}^{E}\operatorname{Cl}_{\mathcal{T}}^{E}(M)$ is obvious.

Thus $\operatorname{Cl}_{\mathcal{T}}^{E}(M) = \operatorname{Cl}_{\mathcal{T}}^{E}\operatorname{Cl}_{\mathcal{T}}^{E}(M)$.

(b) \Rightarrow (a) Let $J \in T$ and $I \subseteq N$ be such that for any $y \in J$ the ideal $(I : y) \in T$,

Hence $N = \operatorname{Cl}_{\mathcal{T}}^{N}(J) \subseteq \operatorname{Cl}_{\mathcal{T}}^{N}(I) = \operatorname{Cl}_{\mathcal{T}}^{N}(I)$

 \therefore Cl^N_T(I) = N and we have I $\in T$, (when T set of N-subgroups)

Note. 2.4.11: When \mathcal{T} is only a topological filter, we have that $\operatorname{Cl}_{\mathcal{T}}^{E}(M)$ is N- subgroup. When \mathcal{T} is linear filter $\operatorname{Cl}_{\mathcal{T}}^{E}(M)$ is \mathcal{T} closed.

Proposition2.4.12: Let $M \subseteq E$ be an ideal then the following statements are equivalent:

- (a) M is χ -honest in E.
- (b) In addition χ is inductive, then above is equivalent to
- (c) For $m \in (Cl_{\chi}^{E}(M) \setminus M \text{ we have } (M: m) = Ann(m)$
- (d) For $m \in (Cl_{\chi}^{E}(M) \setminus M$ we have $Nm \cap N = 0$

Proof: (c) \Rightarrow (d) Lemma 2.2.7

(d) \Rightarrow (a) Lemma 2.2.7

(b) \Rightarrow (c) Let $x \in (Cl_{\chi}^{E}(M) \setminus M$, then there exists $I \in \chi$ with $Ix \subseteq M$, then Ix = 0

[:: M is honest in E, $x \notin M$]

Hence $I \subseteq Ann(x) \subseteq (M: x)$, therefore $(M: x) \in \chi$ [:: χ is inductive]

Hence (M: x) = Ann (x).

(c)⇒(d) Lemma 2.2.7

Note 2.4.13: We get lemma 2.2.8, corollary 2.2.9, corollary 2.2.10, remark 2.2.11, note 2.2.13

Corollary2.4.14: Let χ be weak closed under intersection and proper essential N-subgroups of N are distributively generated, then any χ -honest N-subgroup M \subseteq E satisfies either M $\subseteq T_{\chi}(E)$ or $T_{\chi}(E) \subseteq M$.

Proof: Since χ weak closed under intersection and proper essential N-subgroups of N are distributively generated $Cl_{\chi}^{E}(M)$ and $T_{\chi}(E)$ are subgroups. The proof follows from 2.2.12.

Note2.4.15: Following it we get corollary 2.2.14

Note2.4.16: For χ as a set of essential N-subgroups of N we get lemma 2.3.10.

Moreover if M is E-closed we get all relations between χ -closed, χ -torsion, torsion, superhonest N-subgroups as in section 3.

Let χ be a non empty set of N-subgroups such that $0 \notin \chi$ of near ring N.

For this set also giving the definitions in the same way we get all results of this section.